

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

CO1G 45/00 (2006.01) **BO1D 11/02** (2006.01)

(21) 출원번호 10-2012-0093612

(22) 출원일자 **2012년08월27일** 심사청구일자 **2012년08월27일**

(65) 공개번호 **10-2014-0027704**

(43) 공개일자 2014년03월07일

(56) 선행기술조사문헌

KR101083351 B1*

US20080038168 A1*

KR101210983 B1

US20110072937 A1

*는 심사관에 의하여 인용된 문헌

(45) 공고일자 2014년05월13일

(11) 등록번호 10-1394646

(24) 등록일자 2014년05월07일

(73) 특허권자

한국지질자원연구원

대전광역시 유성구 과학로 124 (가정동)

(72) 발명자

신선명

대전 유성구 신성로72번길 48, (신성동)

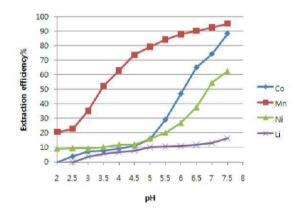
주성호

경남 진주시 도동천로 120, 103동 310호 (상대동, 상대한보아파트)

(74) 대리인

특허법인남촌

전체 청구항 수 : 총 14 항


심사관: 장기완

(54) 발명의 명칭 혼합 추출제의 스크린 효과에 의한 코발트의 추출거동 억제 및 망간의 선택적인 회수방법

(57) 요 약

본 발명은 망간을 포함하는 수용액에 대하여 2-에틸 헥실포스포닉애시드(2-ethyl hexyl phosphonic acid) 및 알킬모노카르복실산(alkyl monocarboxylic acid)를 포함하는 혼합 추출제를 사용하여 용매추출함으로써 망간을 포함하는 유기상 획득하는 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법에 관한 것이다. 본 발명에 의하면 망간> 코발트> 니켈의 추출순서를 변화시키지 않고 특정 pH 범위에서의 유가금속의 추출억제효과에 의하여 코발트와 니켈로부터 망간을 선택적으로 회수할 수 있다. 또한 본 발명은 pH 4-5 범위에서 망간을 선택적으로 회수할 수 있는 용매추출법에 사용되는 혼합 추출제를 제공한다.

대 표 도 - 도1

이 발명을 지원한 국가연구개발사업

과제고유번호 NP2009-022 부처명 환경부

연구사업명 환경융합신기술개발사업

연구과제명 코발트 스크랩 및 슬러지로부터 폐수저감형 코발트 회수 및 나노구조체 제조 융합기술개발

기 여 율 1/1

주관기관한국지질자원연구원연구기간2009.06.01 ~ 2014.05.31

특허청구의 범위

청구항 1

망간을 포함하는 수용액에 대하여 2-에틸 헥실포스포닉애시드(2-ethyl hexyl phosphonic acid) 및 알킬모노카르복실산(alkyl monocarboxylic acid)를 포함하는 혼합 추출제에 있어, 상기 2-에틸 헥실포스포닉애시드(2-ethyl hexyl phosphonic acid)/알킬모노카르복실산(alkyl monocarboxylic acid)의 몰농도 비율은 0.4 내지 0.6인 것을 사용하여 용매추출함으로써 망간을 포함하는 유기상 획득하는 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 2

제1항에서,

상기 수용액은 코발트, 니켈 및 리튬으로 이루어지는 그룹에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 3

제2항에서.

상기 수용액은 망간 및 코발트, 니켈 및 리튬으로 이루어지는 그룹에서 선택된 1종 이상을 각각 동일한 농도로 포함하는 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 4

제2항에서,

상기 수용액에 포함된 망간 및 코발트, 니켈 및 리튬으로 이루어지는 그룹에서 선택된 1종 이상의 농도는 각각 1-20g/L인 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 5

삭제

청구항 6

제1항에서,

상기 혼합 추출제에 포함된 2-에틸 헥실포스포닉애시드(2-ethyl hexyl phosphonic acid) 및 알킬모노카르복실산 (alkyl monocarboxylic acid)의 농도는 0.1M-1M인 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 7

제1항에서,

상기 수용액의 pH(산도)는 4-5인 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 8

제1항에서,

상기 용매추출로부터 얻어지는 유기상에 대하여 EDTA(Ethylenediaminetetraacetic acid)에 의한 세정 공정을 수행하는 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 9

제8항에서,

상기 EDTA(Ethylenediaminetetraacetic acid)의 농도는 0.05M-2M인 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 10

제8항에서,

상기 EDTA(Ethylenediaminetetraacetic acid)의 농도는 0.01M-0.15M인 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 11

제8항에서.

세정 공정 후의 유기상에 대하여 산에 의한 탈거 공정을 수행하는 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 12

제11항에서,

상기 산의 농도는 0.5M-2M인 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 13

제1항에서,

상기 용매추출 공정은 다단으로 이루어지는 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법.

청구항 14

제11항에서,

상기 탈거 공정은 다단으로 이루어지는 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방 법.

청구항 15

삭제

청구항 16

삭제

청구항 17

2-에틸 헥실포스포닉애시드(2-ethyl hexyl phosphonic acid)/알킬모노카르복실산(alkyl monocarboxylic acid) 의 몰농도 비율이 0.4 내지 0.6인 것을 특징으로 하는 망간의 선택적인 회수용 혼합 추출제.

명세서

기 술 분 야

[0001] 본 발명은 혼합 추출제의 스크린 효과에 의한 코발트의 추출거동 억제 및 망간의 선택적인 회수방법에 관한 것으로, 보다 상세하게는 혼합 추출제의 스크린 효과를 이용하여 Co, Ni, Li으로부터 Mn만을 선택적으로 회수하는 방법에 관한 것이다.

배경기술

- [0002] 용매추출을 이용한 유가금속의 분리 및 회수는 용매에 따라 특정 pH 부분에서 원하는 금속을 선택적으로 추출하는 것에 관한 기술이다. 즉 수용액 내 목적금속인 M1과 불순물인 M2가 존재할 때 목적금속인 M1이 낮은 pH 부분에서 추출되고, 불순물인 M2가 높은 pH 범위에서 추출 된다면 이는 M2로부터 M1의 분리 및 회수가 쉽다는 것을 의미한다.
- [0003] 코발트, 니켈, 망간은 물리적, 화학적 거동이 비슷하여 각각의 금속을 분리 및 회수하는데 어려워 습식제련법에 서 항상 주요한 관심사였다. 하지만 이는 Co만을 위한 추출로 Mn이 용액 내 함유되어 있을 경우 종래에 사용되는 추출제를 사용하였을 때 금속이온의 추출순서가 Mn>Co>Ni>Li 순이기 때문에 용매추출법으로 Mn과 Co를 각각회수 및 분리하는 것은 쉽지 않다.
- [0004] 따라서, 용매추출을 이용하여 Mn만을 추출하는 것은 굉장히 어려운 작업이다. 이것은 망간, 코발트 및 니켈은 물리적 성질이 비슷하여 추출되는 pH 범위가 서로 매우 가깝기 때문이다. 특히 Mn과 Co은 추출거동이 비슷하다. 따라서 Co로부터 Mn을 분리 및 회수하는 것은 쉽지 않다. 따라서 본 발명은 코발트로부터 망간을 분리 및 회수하는 기술을 제공하고자 한다.
- [0005] 유가금속에 대한 용매추출법에 대한 기술로서 WO 2005/073415에서는 1-50g/L Mn, 0.1-5g/L Co, 0-0.1g/L Ni의 수용액으로부터 Co 및 Ni를 회수하는 방법을 제시하였다. 그러나 상기 문헌에서와 같이 10배 정도 높은 농도 차이가 나는 Mn으로부터 상대적으로 저 농도로 존재하는 Co와 Ni를 회수하는 것은 쉬운 일이다. 또한 상기 문헌에서는 혼합 용매(상업명: LIX63과 Versatic 10 acid를 혼합)를 사용하여 원래 망간보다 높은 pH에서 추출되는 Co와 Ni의 추출곡선을 좌측으로 이동시킴으로써 Mn 보다 낮은 pH 범위(pH는 3.5-4.5)에서 추출되도록 하였다. 이는 일반적인 금속의 추출순서 망간> 코발트> 니켈을 코발트> 니켈> 망간 순으로 변화시킨 상승효과에 의한 것이다.
- [0006] 황산용액내 Co로부터 Mn의 분리는 D2EHPA를 사용함으로써 분리할 수 있는 것으로 보고되었다. 하지만 이는 추출이 일반적이지 않은 organic pH에 대해 도식화되었다. 망간과 코발트의 추출 순서 또한 일치하지 않았다. 따라서 본 발명은 고농도로 존재하는 코발트, 니켈, 리튬으로부터 망간을 분리하는데 도움을 주고자 하는 목적으로 혼합추출제를 사용하여 이전까지의 SSX system과는 다른 연구의 형태로, screen 효과를 이용하여 Mn을 Co, Ni 그리고 Li으로부터 분리 및 회수하는 연구를 수행하였다.

발명의 내용

해결하려는 과제

[0007] 본 발명은 혼합 추출제를 사용하여 특정 pH 영역에서 Mn만을 선택적으로 분리 및 회수하는 방법을 제공하는 것을 목적으로 한다.

[0008] 또한 본 발명은 유가금속의 용매추출법에 사용되는 추출제로서 망간에 대한 회수율이 높은 혼합 추출제를 제공하고자 한다.

과제의 해결 수단

- [0009] 본 발명은 상기의 목적을 달성하기 위한 것으로, 망간을 포함하는 수용액에 대하여 2-에틸 헥실포스포닉애시드 (2-ethyl hexyl phosphonic acid) 및 알킬모노카르복실산(alkyl monocarboxylic acid)를 포함하는 혼합 추출제를 사용하여 용매추출함으로써 망간을 포함하는 유기상 획득하는 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법을 제공한다.
- [0010] 또한, 상기 수용액은 코발트, 니켈 및 리튬으로 이루어지는 그룹에서 선택된 1종 이상을 포함하는 것을 특징으로 한다.
- [0011] 또한, 상기 수용액은 망간 및 코발트, 니켈 및 리튬으로 이루어지는 그룹에서 선택된 1종 이상을 각각 동일한 농도로 포함하는 것을 특징으로 한다.
- [0012] 또한, 상기 수용액에 포함된 망간 및 코발트, 니켈 및 리튬으로 이루어지는 그룹에서 선택된 1종 이상의 농도는 각각 1-20g/L인 것을 특징으로 한다.
- [0013] 또한, 상기 혼합 추출제에 포함된 2-에틸 헥실포스포닉애시드(2-ethyl hexyl phosphonic acid)/알킬모노카르복 실산(alkyl monocarboxylic acid)의 농도 비율은 0.4 내지 0.6인 것을 특징으로 한다.
- [0014] 또한, 상기 혼합 추출제에 포함된 2-에틸 헥실포스포닉애시드(2-ethyl hexyl phosphonic acid) 및 알킬모노카르 복실산(alkyl monocarboxylic acid)의 농도는 0.1M-1M인 것을 특징으로 한다.
- [0015] 또한, 상기 수용액의 pH(산도)는 4-5인 것을 특징으로 한다.
- [0016] 또한, 상기 용매추출로부터 얻어지는 유기상에 대하여 EDTA(Ethylenediaminetetraacetic acid)에 의한 세정 공 정을 수행하는 것을 특징으로 한다.
- [0017] 또한, 상기 EDTA(Ethylenediaminetetraacetic acid)의 농도는 0.05M-2M인 것을 특징으로 한다.
- [0018] 또한, 상기 EDTA(Ethylenediaminetetraacetic acid)의 농도는 0.01M-0.15M인 것을 특징으로 한다.
- [0019] 또한, 세정 공정 후의 유기상에 대하여 산에 의한 탈거 공정을 수행하는 것을 특징으로 한다.
- [0020] 또한, 상기 산의 농도는 0.5M-2M인 것을 특징으로 한다.
- [0021] 또한, 상기 용매추출 공정은 다단으로 이루어지는 것을 특징으로 한다.
- [0022] 또한, 상기 탈거 공정은 다단으로 이루어지는 것을 특징으로 한다.
- [0023] 또한, 본 발명은 상기의 방법에 의하여 얻어지는 것을 특징으로 하는 망간을 포함하는 유기상을 제공한다.
- [0024] 또한, 본 발명은 2-에틸 헥실포스포닉애시드(2-ethyl hexyl phosphonic acid)/알킬모노카르복실산(alkyl monocarboxylic acid)의 농도 비율이 0.4 내지 0.6인 것을 특징으로 하는 망간의 선택적인 회수용 혼합 추출제를 제공한다.

발명의 효과

[0025] 본 발명에 의하면 혼합 추출제를 사용하여 유가금속의 추출 순서를 변화시키지 않으면서, 특히 코발트의 추출율을 감소시킴으로써 망간을 선택적으로 분리 및 회수할 수 있다. 즉 망간> 코발트> 니켈의 순서대로 유가 금속이 추출되는 한편 pH 4-5의 산도 범위에서 코발트와 니켈의 추출율이 억제됨으로써 망간이 선택적으로 회수되었다.

도면의 간단한 설명

[0026] 도 1은 0.37M PC88A + 0.952M Versatic 10 acid의 혼합 추출제를 이용한 pH-isotherm 그래프.

- 도 2는 0.56M PC88A+0.952M Versatic 10 acid 혼합 추출제를 이용한 pH-isotherm 그래프.
- 도 3은 0.78M PC88A+0.952M Versatic 10 acid 혼합 추출제를 이용한 pH-isotherm 그래프.
- 도 4a 및 4b는 각각 PC88A와 Versatic 10 acid 단독 사용에 대한 유가 금속의 추출거동.
- 도 5 내지 도 8은 각각 PC88A로의 Verssatic 10 acid의 농도 첨가에 따른 Co, Mn, Ni, Li의 추출거동.
- 도 9는 0.56M PC88A /0.952M Versatic 10 acid 의 혼합 추출제 농도에 대한 유가금속의 추출거동.
- 도 10은 EDTA의 농도에 따른 세정 공정의 결과.
- 도 11은 H₂SO₄의 농도에 따른 탈거 공정의 결과.
- 도 12는 향류 2단 모의 탈거 과정에서 Mn 용액의 탈거 흐름의 모식도.

발명을 실시하기 위한 구체적인 내용

- [0027] 본 발명은 망간을 포함하는 수용액에 대하여 2-에틸 헥실포스포닉애시드(2-ethyl hexyl phosphonic acid) 및 알 킬모노카르복실산(alkyl monocarboxylic acid)를 포함하는 혼합 추출제를 사용하여 용매추출함으로써 망간을 포함하는 유기상 획득하는 것을 특징으로 하는 코발트의 추출거동 억제 및 망간의 선택적인 회수방법에 관한 것이다.
- [0028] 이하 본 발명을 첨부한 도면을 참조하여 상세히 설명한다.
- [0029] 본 발명에서 혼합 추출제로 사용하는 것은 유기 용매이다. 상기 유기 용매로는 2-에틸헥실포스포닉 애시드(2-ethyl hexyl phosphonic acid)(상업명: PC88A)에 알킬모노카르복실산(alkyl monocarboxylic acid)(상업명: Versatic 10 acid)를 첨가하여 혼합 추출제로 용매추출함으로써 망간 및 다른 유가금속을 포함하는 수용액으로 부터 망간을 선택적으로 분리 및 회수한다.
- [0030] 본 발명에서 혼합 추출제에 포함되는 상기 2-에틸핵실포스포닉 애시드(2-ethyl hexyl phosphonic acid)/알킬모 노카르복실산(alkyl monocarboxylic acid)의 농도 비율은 바람직하게 0.4 내지 0.6이다. 상기 혼합 추출제 중의 유기 용매 간 농도 비율의 범위에서 본 발명이 달성하고자 하는 망간의 선택적 추출이 최적의 효율로 달성될 수 있기 때문이다. 즉, 본 발명은 혼합 추출제에 포함되는 유기 용매들의 농도 비율을 조절하여 망간을 포함하는 수용액에 포함된 망간의 추출율은 향상시키는 반면 후술될 다른 유가금속의 추출율을 낮춤으로써 망간을 선택적으로 회수하는 방법에 관한 것이다.
- [0031] 본 발명에서 제공하는 바람직한 2-에틸헥실포스포닉 애시드(2-ethyl hexyl phosphonic acid) 및 알킬모노카르복 실산(alkyl monocarboxylic acid)의 농도 범위는 0.1M-1M이다. 상기 농도 범위에서 2-에틸헥실포스포닉 애시드 (2-ethyl hexyl phosphonic acid)/알킬모노카르복실산(alkyl monocarboxylic acid)의 농도 비율이 0.4 내지 0.6으로 조절된 혼합 추출제를 사용하여 망간을 선택적으로 회수한다.
- [0032] 한편, 상기 혼합 추출제에는 희석제로 kerosene이 추가적으로 포함될 수 있다.
- [0033] 본 발명에서 망간을 포함하는 수용액에는 코발트, 니켈 및 리튬으로이루어지는 그룹에서 선택된 1종 이상이 포함될 수 있다. 즉, 본 발명은 망간 이외에 코발트, 니켈 또는 리튬을 불순물로 포함하는 수용액으로부터 망간을 선택적으로 회수하는 것이다. 이때 바람직하게 상기 수용액에는 망간 및 코발트, 니켈 또는 리튬이 동일 또는 유사한 범위의 농도로 포함되어 있을 수 있다. 또한 더욱 바람직하게 그 농도는 각각 1-20g/L이다.
- [0034] 또한, 본 발명에서 용매추출의 대상이 되는 수용액의 pH(산도)는 바람직하게 4-5이다. 용매추출에서는 수용액의 pH에 따라 추출율이 다르게 나타나며 이에 따라 각 유가금속에 대한 추출곡선이 얻어진다. 본 발명은 이러한 유가금속의 추출곡선 자체는 변화시키지 않으면서 즉, 유가금속의 추출 순서는 변화시키기 않으면서 특정 pH 영역에서 망간 이외의 금속들의 추출율을 감소시킴으로써 망간의 회수율을 높인다. 특히 본 발명에서는 상기 pH 4-5 영역에서의 코발트의 추출율을 낮추어 망간의 선택적 추출이 가능한 혼합 추출제를 제공한다.
- [0035] 따라서 본 발명에서는 상기 용매추출 과정에서 얻어진 유기상에 대하여 망간과 공동 추출된 소량의 코발트와 니 켈을 제거하기 위하여 후속적으로 세정 공정을 수행한다. 상기 세정 공정에서는 EDTA를 사용하여 선택적으로 코 발트와 니켈을 제거함으로써 오직 순수한 망간만이 유기상에 존재하도록 한다. EDTA의 농도 증가에 따라 불순물

의 세정율은 증가하나 Mn의 손실율도 함께 증가한다. 따라서 효과적인 세정을 위한 EDTA의 농도가 제시될 수 있다. 본 발명에서는 바람직하게 0.05M-0.2M EDTA, 더욱 바람직하게 0.01M-0.15M EDTA에 의한 세정 공정을 제공한다.

- [0036] 세정 공정 후에 얻어지는 망간을 포함하는 유기상으로부터 망간을 회수하기 위하여 탈거 공정을 수행할 수 있다. 상기 탈거 공정은 황산(H₂SO₄)으로 대표되는 산에 의한 탈거 공정이 일반적이나 이에 한정되는 것은 아니다. 탈거율은 황산의 농도에 의존적이며 바람직하게는 다단계로 탈거를 수행함으로써 완벽한 탈거를 달성할 수 있다
- [0037] 본 발명은 상기 망간의 선택적 분리 및 회수 방법과 아울러, 각 공정에서 얻어지는 망간을 포함하는 유기상을 추가로 제공한다. 즉, 용매추출 공정 후 망간을 포함하는 유기상 및 세정 공정 후 불순물이 제거되어 더욱 높은 순도로 망간을 포함하는 유기상 역시 본 발명의 범위에 포함되는 것으로 이해되어야 한다.
- [0038] 이하 실시예를 통해 본 발명을 더욱 상세하게 설명한다. 그러나 이는 발명의 이해를 돕기 위한 것으로 본 발명이 이에 한정되는 것으로 이해되어서는 안 된다.
- [0039] 실시예
- [0040] 1. 수상(A) 및 유기상(0)의 준비
- [0041] 수상으로서 1-20g/L Co, 1-20g/L Mn, 1-20g/L Ni, 1-10g/L Li 농도의 수용액을 준비하였다. 초기 pH는 4-6으로 조정하였다. pH 조절제로는 NH40H 용액을 사용하였다.
- [0042] 다음으로 유기상으로서 2-에틸헥실포스포닉 애시드(2-ethyl hexyl phosphonic acid)(상업명: PC88A) 및 알킬모 노카르복실산(alkyl monocarboxylic acid)(상업명: Versatic 10 acid)을 사용하였다. 혼합 추출제로는 0.1M-1M 의 PC88A 및 0.1M-1M Versatic 10 acid의 농도의 범위로 조절하여 혼합하여 제조하였다. 희석제로는 kerosene 을 사용하였다.
- [0043] 2. pH-isotherm 실험 및 향류다단 추출
- [0044] 1L 파이렉스 용기에 상기 준비된 수상과 유기상을 각각 200ml씩 투입하였다. 이때 0(유기상)/A(수상)의 비율은 1-2의 조건으로 조정하였다. 수상의 pH를 1-7.5에서 측정하였으며 pH 0.5 간격으로 목표 pH 값에서 5분간 교반한 후 수상과 유기상이 완벽하게 분리된 후에 수상을 채취하였다. 다음으로 향류다단 추출은 125ml 분액깔대기 (separation funnel)에 수상과 유기상을 각각 20ml씩 투입 후 5분 동안 교반하였다. 모든 실험에서 채취된 수상은 원자 흡광도 분석장치(Perkin Elmer AAnalyst 400, AAS)로 분석되었다.
- [0045] 3. 추출거동의 평가
- [0046] 3.1 혼합용매내 PC88A 농도증가에 따른 유가금속의 추출거동
- [0047] 최적의 혼합용매의 농도를 파악하기 위해 우선 0.37M PC88A+0.952M Versatic 10 acid 혼합 용매, 0.56M PC88A+0.952M Versatic 10 acid 혼합용매, 0.78M PC88A+0.952M Versatic 10 acid 혼합용매를 이용하여 Versatic 10 acid의 농도를 고정한체 PC88A의 농도효과에 따른 유가금속의 추출거동을 살펴보았다.
- [0048] 3.1.1 0.37M PC88A로 0.952M Versatic 10 acid 첨가효과
- [0049] 도 1에 0.37M PC88A + 0.952M Versatic 10 acid 의 혼합 추출제 농도에 대한 유가금속의 추출거동을 나타내었다. 도 1에서 알 수 있듯이 Co의 pH₅₀ 값은 약 pH 6, Mn의 pH₅₀ 값은 약 pH 3.5 그리고 Ni의 pH₅₀ 값은 약 pH 6.8이었다. 이 값들을 근간으로 △ pH₅₀ 값은 △ pH_{50(Co-Mn)}=2.5, △ pH_{50(Ni-Mn)}=3.3으로 확인하였다.

- [0050] 3.1.2 0.56M PC88A로 0.952M Versatic 10 acid 첨가효과
- [0051] 0.56M PC88A+0.952M Versatic 10 acid 혼합 추출제를 이용한 pH-isotherm 실험을 도 2에 나타내었다. 도 2에서 볼 수 있듯이 0.56M PC88A + 0.952M Versatic 10 acid system에서 pH₅₀ 값은 Mn은 pH=3.0, Co는 pH=6.5, Ni은 pH=7.25였다. 이 값들을 근간으로 △ pH₅₀ 값은 △ pH_{50(Co-Mn)}=3.5, △ pH_{50(Co-Mn)}=4.25로 확인하였다.
- [0052] 3.1.3 0.78M PC88A로 0.952M Versatic 10 acid 첨가효과
- [0053] 0.78M PC88A+0.952M Versatic 10 acid 혼합 추출제를 이용한 pH-isotherm 실험을 도 3에 나타내었다. 도 3에서 볼 수 있듯이 pH₅₀ 값은 Mn은 pH=4.0, Co는 pH=4.5, Ni은 pH=6.25였다. 이 값들을 근간으로 △ pH₅₀ 값은 △ pH_{50(Co-Mn)}=0.5, △ pH_{50(Ni-Mn)}=2.25로 확인하였다. 또한 pH 5이상부터 Co의 추출율이Mn보다 앞지르는 것을 확인할 수 있는데, 이는 Versatic 10 acid의 효과로 Versatic 10 acid가 pH 5 이상부터 Mn보다 Co를 선호함을 알 수 있다.
- [0054] 3.1.4 혼합 용매 내 PC88A 농도증가에 따른 pH₅₀ 및 △pH ₅₀값
- [0055] 혼합용매 내 PC88A의 농도 증가에 따른 pH 50값을 정리하여 표 1에 나타내었다. pH 50은 금속이온이 50% 추출될 때의 pH값으로 △pH 50 값은 두 금속을 분리하는 상대적인 기준의 척도로 쓰인다. 이 값이 높을수록 두 금속의 분리는 수월하다.

丑 1

[0056]

혼합 system (xM PC88A+0.952M Versatic)	pH_{50}	$\triangle pH_{50(\text{M1-M2})}$
0.37M PC88A	Mn: 3.5	Co-Mn=2.5
	Co: 6	Ni-Mn=3.3
	Ni: 6.8	
0.56M PC88A	Mn: 3	Co-Mn=3.5
	Co: 6.5	Ni-Mn=4.25
	Ni: 7.25	
0.78M PC88A	Mn∶ 4	Co-Mn=0.5
	Co: 4.5	Ni-Mn=0.25
	Ni: 4.25	

- [0057] 표 1에서 볼 수 있듯이 △pH 50 값은 0.56M PC88A + 0.952M Versatic 10 acid를 혼합하였을 때 가장 높은 것을 알 수 있다. 이때 △pH50(Co-Mn)=3.5, △pH50(Ni-Mn)=4.25 였다. 또한, 0.37M PC88A + 0.952M Versatic 10 acid를 혼합하였을 때도 두 금속의 분리가 용이한 것으로 판단할 수 있다. 따라서 0.952M Versatic 10 acid의 농도에서 PC88A의 농도별 실험에서 최적의 PC88A의 농도는 0.37 및 0.56M 임을 확인할 수 있으며, 이하 실험에서는 0.56M의 농도로 실험을 진행하였다.
- [0058] 3.2. 혼합용매 내 Versatic 10 acid 농도증가에 따른 유가금속의 추출거동
- [0059] 3.2.1 각 용매 단독 사용에 따른 유가금속의 추출거동
- [0060] 0.56M PC88A와 0.952M Versatic 10 acid를 단독 사용하여 O/A=1의 조건에서 pH-isotherm 실험을 수행하였다. 그 결과를 도 4에 나타내었다. 도 4a는 PC88A를 단독으로 사용하였을 경우의 그래프로서, Mn의 최대 추출율은 pH 5.5에서 대략 90%, Co는 50%, Ni과 Li은 pH 전 범위에서 10% 안팎으로 추출되었다. 이때 pH50 값은 Mn은 pH=3.25, Co는 pH=5.2 값이었다. 또한 Co, Ni, Li으로부터 Mn을 분리하기 위해 최적의 separation factor 값은 pH=4.5에서 β (Mn/Co)=9.04, β (Mn/Ni)=320으로 가장 높았다. 하지만 pH=4.5에서 Co는 32%, Mn은 82% 추출되어 Co를

세정 및 제거하는데 많은 단수가 요구될 것으로 예상된다. 도 4b의 Versatic 10 acid를 단독으로 사용하였을 경우 유가금속의 추출률은 pH 2-5.5까지 일정하다 pH 5.5부터 유가금속의 추출률이 증가하기 시작하였다. 그리고 유가금속의 추출순서는 Ni >Co>Mn> Li 순이었다.

- [0061] 3.2.2 0.56M PC88A로의 Versatic 10 acid 첨가 농도 증가에 따른 유가금속의 추출거동
- [0062] PC88A에 Verssatic 10 acid의 농도 효과를 알아보기 위해0.56M PC88A에 0M-1.19M Versatic 10를 첨가하여 pH isotherm 실험을 수행하였고 그 결과를 도 5-8에 나타내었다.
- [0063] Co의 경우(도 5) pH 2-5.5 범위사이에서Versatic 10 acid의 첨가 농도가 증가 될수록 Co의 추출률은 감소함을 알 수 있다. 그리고 pH 6이상부터 Versatic 10 acid의 첨가 농도의 증가는 Co의 추출률을 증가시켰다. 이는 혼합추출제 중 Versatic 10 acid의 농도 증가는 pH 2-5.5범위에서 Co의 추출거동을 억제시키며 pH 6 이상의 범위에서 Co의 추출거동이 증가되는 효과에 영향을 끼침을 알 수 있다. 특히 0.56M PC88A로 0.952M Versatic 10 acid가 첨가되었을 때 0.56M PC88A 단독 사용과 비교하면 pH 4.5 부분에서 Co의 추출율이 33.0%에서 10.9%로 감소하여 약 21% 감소됨을 알 수 있다.
- [0064] Mn의 경우(도 6) Versatic 10 acid의 농도 증가에 대해 추출곡선이 변하지 않고 거의 일정하나 추출률이 약간 감소함을 알 수 있다.
- [0065] Ni의 경우(도 7) 첨가된 Versatic 10 acid의 농도가 증가할수록 Ni의 추출률이 증가하였다. 특히 Versatic 10 acid 의 모든 농도 증가에 대해 pH 2-5범위까지는 추출률이 10% 안팎으로 일정하게 유지되다 pH 5.5부터 추출률이 증가됨을 알 수 있다. 또한 Ni의 최대 추출율이 6%에서 Versatic 10 acid 의 농도 증가에 따라 최대 70.4%까지 증가함을 알 수 있다. 즉 Versatic 10 acid는 pH 5.5이상의 범위에서부터 Ni에 대해서 선택적으로 작용함을 알 수 있다.
- [0066] Li의 경우(도 8) 전 pH 영역에서 추출되지 않았으며 이는 PC88A, Versatic 10 acid 두 용매 모두 Li에 대해서 는 영향을 끼치지 않음을 알 수 있다.
- [0067] 표 2에 pH 4.5에서 각 혼합 시스템에 대한 D_{mix}/D_{PCSSA} 값과 separation factor 값을 각각 나타내었다.

丑 2

[0068]

	D_{mix}/D_{PC88A}				Separation factor value	
Versatic 10 acid[M]	Со	Mn	Ni	Li	$\beta_{\text{Mn/Co}}$	$\beta_{\text{Mn/N}i}$
0	1	1	1	1	13.09	114.69
0.476	0.81	0.70	9.49	4.61	7.87	14.57
0.714	0.42	0.77	10.79	4.25	16.50	22.96
0.952	0.25	0.63	9.66	2.01	22.80	20.94
1.19	0.25	0.65	11.42	0.64	22.66	20.91

[0069] 표 2에서 D_{PC88A} 값은 PC88A를 단독으로 사용하였을 때 분배계수이며(Distribution value) D_{mix}는 첨가된 Versait 10 acid 농도에 대한 혼합 용매의 분배계수(Distribution value) 이다. 우선 추출제의 농도증가는 pH에 대한 추출곡선을 좌측으로 이동시킨다. 즉 일정한 pH에서 추출율 또는 D값이 증가한다. 대조적으로 추출율의 농도감소는 추출곡선을 우측으로 이동시키며 일정한 pH에서 추출율 또는 D값의 감소를 가져온다. 위의 표 2에서 PC88A의 농도가 일정하게 고정되었을 때 Versatic 10 acid의 첨가에 따른 D_{mix}/D_{PC88A}값이 일정하다면 Versatic 10 acid 농도의 첨가는 아무런 효과를 가지지 않을 것이며, D_{mix}/D_{PC88A}값이 증가한다면 synergistic effect의 결과를 가져올 것이고, D_{mix}/D_{PC88A}값이 감소한다면 현 연구의 목적과 맞게 screen 효과를 가지게 될 것이다. 표 2에서 보여주 듯이 Versatic 10 acid의 농도증가는 Co와 Mn에 대해서 각 각 D_{mix}/D_{PC88A}값의 감소를 가져왔다.특히 Versatic 10 acid의 농도가 0.952M 이상에서 Co는 0.25까지 감소하였으며 Mn은 0.63까지 감소하여 PC88A 단독 사용보다 각각 0.75, 0.37만큼씩 감소하였다. Ni의 경우 Versatic 10 acid의 첨가 농도가 증가할수록 D_{mix}/D_{PC88A}값은 10 안팎으로 이는 PC88A 단독 사용하였을 때보다 증가하여 synergistic 효과가 나타남을 알 수 있다. Separation factor

값으로 비교해 볼 때 0.952M Versatic 10 acid의 농도가 첨가되었을 때 $\beta_{(Mn/Co)}=22.80$, $\beta_{(Mn/Ni)}=20.94$ 로 이 농도에서 Mn의 선택적인 회수가 가능한 최적의 혼합 추출제의 농도가로 판단하였다.

[0070] 3.3. Count current simulation test

[0071] 실제 연속식 공정에서의 Mn의 추출을 예측하기 위해 0.56 PC88A/0.952M Versatic 10 acid 혼합 용매를 12.5M NaOH로 전처리하여향류다단 모의 추출실험을 2단과 3단에서 진행하였다. 이에 대한 3단의 결과를 도 9에 나타내었다. 추출 1단은 수용액이 투입되는 단이며, 추출 3단은 최종적으로 수용액이 나가는 단으로 R1은 1단을 나가는 raffinate 농도, R2는 2단을 나가는 raffinate 농도, R3는 3단을 나가는 raffinate 농도이다. 도 9에서 보여주듯이 11.58g/L Mn,0.85g/L Co가 추출되었고 0.15g/L Ni, 0.14g/L Li이 추출되었지만 Mn을 Co, Ni, Li으로 부터 완벽하게 분리할 수 없었다. 따라서 EDTA를 사용한 불순물의 선택적인 세정실험을 수행하였다.

[0072] 4. Loaded organic으로부터 EDTA를 사용한 Co, Ni, Li의 세정

[0073] Loaded orgnaic내 공동 추출된 Co, Ni 그리고 Li을 선택적으로 제거하기 위해 EDTA의 농도를 0.05-2M을 사용하여 0/A=4, 25℃ 조건에서 세정실험을 수행하였다. 그 결과를 도 10에 나타내었다. 도 10에서 볼 수 있듯이 EDTA의 농도 증가에 따라 Mn의 손실율 역시 증가하였지만 최대 세정율이 103.0% Co와 109% Ni 그리고 112% Li 이었다. 특히 0.1M DETA를 사용하였을 때 망간의 손실율은 0.42%로 이 조건하에서 100.12%의 Co, 103.08% Ni, 96.8% Li의 세정이 달성되어 유기상 내 순수한 Mn 용액을 얻을 수 있었다.

[0074] 5. 탈거

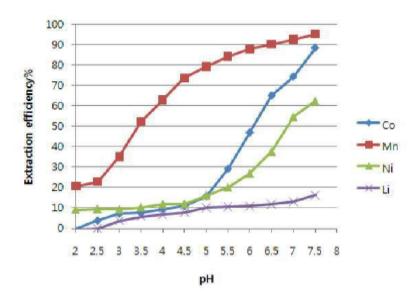
[0075] 1-20g/L Mn, 1-20g/L Co, 1-20g/L Ni, 1-10g/L Li 수용액으로부터 0.56M PC88A와 0.95M Versatic 10 acid 혼합 용매를 이용하여 향류 3단 추출 후 EDTA 세정과정을 거친 loaded organic의 함량은 거의 순수한 11.58 g/L Mn 용액의 조성을 가지고 있었다. 이 loaded organic을 대상으로 산 농도별탈거와 0/A 비율에 의한 탈거 그리고 향류 2단 탈거 실험을 진행하였다.

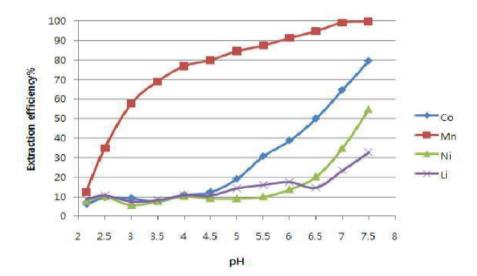
[0076] 5.1. 산 농도별탈거

[0077] H₂SO₄ 농도를 0.1M, 0.3M, 0.5M, 0.7M 1M, 1.5M, 2M, 2.5M, 3M 농도를 달리하여 0/A 비율을 1-2의 범위의 실험 조건하에서 Mn을 함유한 loaded organic을 탈거하였다. 0/A 비율 2에 의한 실험결과를 도 11에 나타내었다. 도 11에서 볼 수 있듯이 H₂SO₄의 농도가 0.5M까지 증가할수록 Mn의 탈거율은 증가하였지만 그 이상의 농도에서는 감소하였다. 따라서 0.5M의 산 농도에서 따라서 1 step 만으로는 완벽한 탈거가 어려워 0.5M H₂SO₄의 농도에서 향류 2단 모의 탈거 실험을 진행하였다.

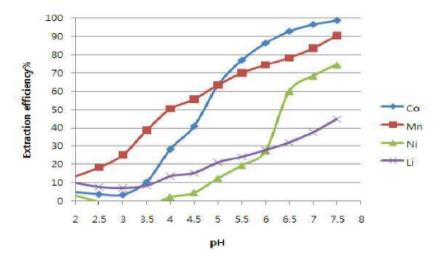
[0078] 5.2. 향류 2단 모의 탈거

[0079] 향류 2단 모의 탈거 실험을 0/A=2의 조건에서 0.5M H₂SO₄를 이용해 실시하였고 그 결과를 도 12에 나타내었다. 전체 탈거율은 99.97%였으며 2단을 빠져나갈 때 organic이 함유한 Mn의 농도는 2.7mg/L로 매우 소량이었다. 따라서 순수한 Mn 용액을 획득할 수 있었다.

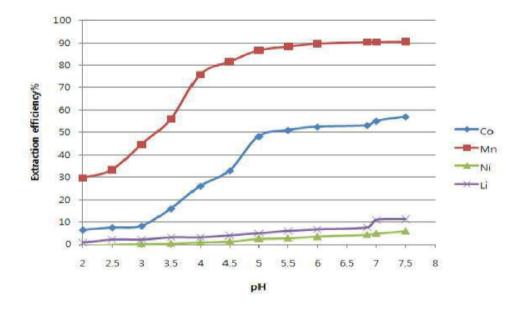

[0080] 6. 결론

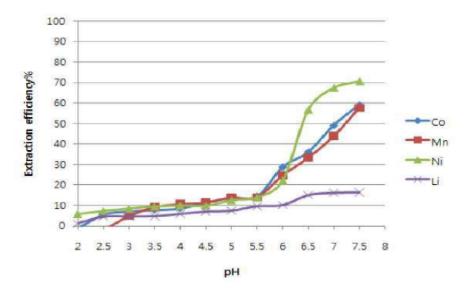

[0081] Co, Ni, Mn 그리고 Li을 함유한 수용액으로부터 PC88A로 Versatic 10 acid를 첨가하여 혼합 용매를 사용하였을 때 Versatic 10 acid의 농도 증가는 Co의 추출거동을 감소시키는 결과를 야기시켰다. 따라서 혼합 용매를 사용하여 Mn을 Co, Ni 그리고 Li으로부터 분리 및 회수할 수 있었고 이 때 주요 불순물인 Co가 소량 공동 추출되었다. 공동 추출된 불순물은 EDTA 세정용액으로 세정하여 loaded organic내 순수한 Mn 용액을 획득할 수 있었으며 희석된 H₂SO₄를 탈거용액으로 사용하여 마침내 Mn solution을 획득 할 수 있었다. 본 발명에 따른 공정을 통해

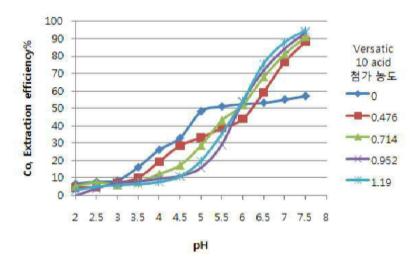
고농도로 존재하는 Co(1-20g/L), Mn(1-20g/L), Ni(1-20g/L), Li(1-10g/L)으로부터 Mn만을 적은 단수(추출3단, 탈거2단)로 분리 및 회수할 수 있음을 알 수 있으며, 용액 내 남겨진 Co, Ni 그리고 Li은 기존의 용매추출방법으로 분리할 수 있다.

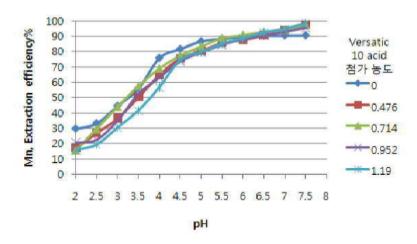

도면

도면1

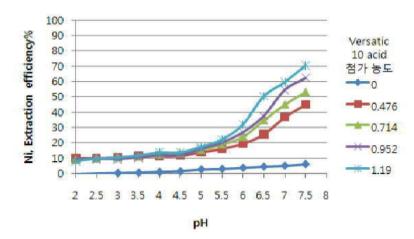



도면3

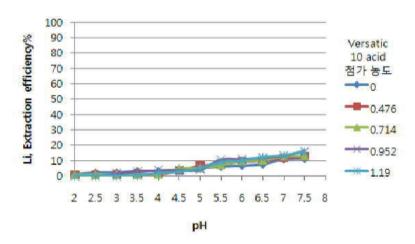

도면4a

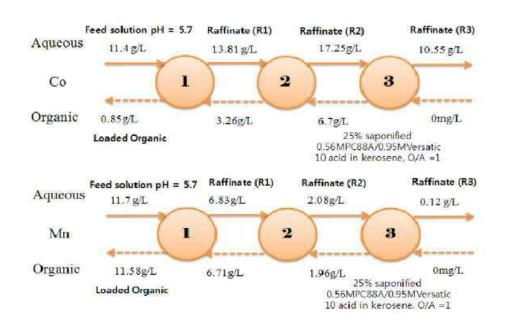


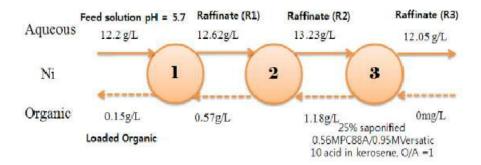
도면4b

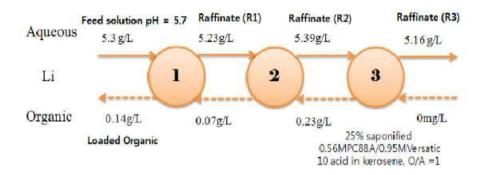


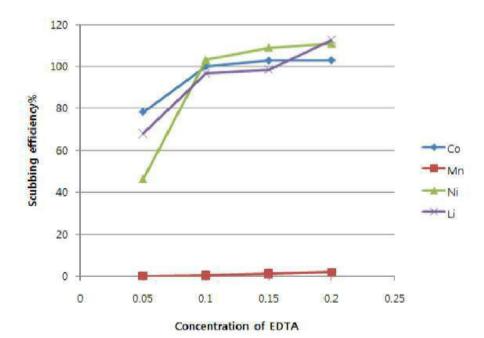
도면5

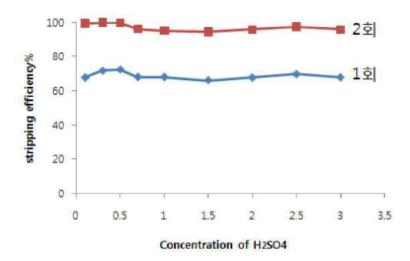



도면7


도면8




도면9a


도면9b



도면11

