

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

G01J 3/00 (2006.01) **G01J 1/04** (2006.01)

(21) 출원번호 10-

10-2013-0001581

(22) 출원일자

2013년01월07일 2013년01월07일

심사청구일자 **2**(56) 선행기술조사문헌

KR1020120083911 A

JP2000131143 A

(45) 공고일자 2014년03월19일

(11) 등록번호 10-1375378

(24) 등록일자 2014년03월11일

(73) 특허권자

한국 천문 연구원

대전광역시 유성구 대덕대로 776 (화암동)

(72) 발명자

한정열

대전 유성구 유성대로 1741, 107동 1001호 (전민동, 세종아파트)

강용우

대전광역시 유성구 대덕대로, 한국천문연구원

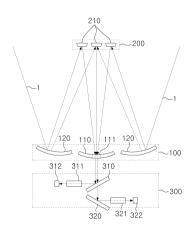
남욱원

대전 유성구 상대로 17, 305동 1501호 (상대동, 도안신도시한라비발디아파트)

(74) 대리인

정회환

전체 청구항 수 : 총 12 항


심사관: 김창주

(54) 발명의 명칭 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템

(57) 요 약

본 발명은 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템에 관한 것으로 이러한 본 발명의 한 실시예는 광통부를 가지는 제1 주반사경과 상기 제1 주반사경의 둘레에 위치하는 복수 개의 제2 주반사경을 구비한 주반사경부, 상기 주반사경부와 마주보게 위치하며, 상기 제1 및 제2 주반사경에서 반사된 빛을 상기 광통부로 반사시키는 부반사경부, 상기 광통부 하단에 위치하며 상기 광통부를 통과한 빛 중테라헤르츠(tera hertz) 대역의 신호를 통과시키고 나머지 빛을 반사시키는 빔 스플리터(beam splitter), 상기 빔 스플리터로부터 반사된 빛에서 적외선을 필터링하여 상을 맺어주는 제1 결상광학계, 상기 제1 결상광학계에 의해 얻어진 상기 상을 활상하여 전기적인 신호로 출력하는 이미지 센서(image sensor), 상기 빔 스플리터를 통과한 상기 테라헤르츠 대역의 신호를 필터링(filtering)하는 제2 결상광학계, 그리고 상기 제2 결상광학계에 의해 필터링된 상기 테라헤르츠 대역의 신호를 검출하는 테라헤르츠 검출기를 포함한다.

대 표 도 - 도3

특허청구의 범위

청구항 1

광통부를 가지는 제1 주반사경과 상기 제1 주반사경의 둘레에 위치하는 복수개의 제2 주반사경을 구비한 주반사경부.

상기 주반사경부와 마주보게 위치하며, 상기 제1 및 제2 주반사경에서 반사된 빛을 상기 광통부로 반사시키는 부반사경부.

상기 광통부 하단에 위치하며 상기 광통부를 통과한 및 중 테라헤르츠(tera hertz) 대역의 신호를 통과시키고 나머지 빛을 반사시키는 빔 스플리터(beam splitter),

상기 빔 스플리터로부터 반사된 빛에서 적외선을 필터링하여 상을 맺어주는 제1 결상광학계,

상기 제1 결상광학계에 의해 얻어진 상기 상을 촬상하여 전기적인 신호로 출력하는 이미지 센서(image sensor),

상기 빆 스플리터를 통과한 상기 테라헤르츠 대역의 신호를 필터링(filtering)하는 제2 결상광학계, 그리고

상기 제2 결상광학계에 의해 필터링된 상기 테라헤르츠 대역의 신호를 검출하는 테라헤르츠 검출기

를 포함하는 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템.

청구항 2

제1항에서,

상기 제1 주반사경과 제2 주반사경은 동일한 형태를 갖는 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템.

청구항 3

제2항에서,

상기 제1 및 제2 주반사경은 원형, 다각형, 타원 중 어느 하나의 형태를 갖는 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템.

청구항 4

제1항에서,

상기 제1 주반사경과 제2 주반사경은 서로 다른 형태를 갖는 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템.

청구항 5

제4항에서,

상기 제1 및 제2 주반사경 중 어느 하나는 원형, 다각형, 타원 중 어느 하나의 형태를 갖고, 다른 하나는 원형, 다각형, 타원 중 어느 하나의 형태를 갖는 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템.

청구항 6

제1항에서,

상기 부반사경부는 상기 주반사경부의 상기 제1 및 제2 주반사경의 개수의 합과 동일한 개수의 제1 및 제2 부반 사경을 가지는 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템.

청구항 7

제6항에서,

상기 제1 및 제2 부반사경은 상기 제1 및 제2 주반사경과 동일한 형태를 갖는 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템.

청구항 8

제6항에서,

상기 제1 및 제2 부반사경은 상기 제1 및 제2 주반사경 중 어느 하나의 지름보다 작은 지름을 갖는 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템.

청구항 9

제1항에서.

상기 제1 결상광학계는 적외선만을 통과시키는 필터를 포함하는 빔 스플리터를 이용하여 근적외선 신호 및 테라 헤르츠 대역의 신호를 검출하는 광학 시스템.

청구항 10

제1항에서.

상기 이미지 센서는 CCD(Charge-Coupled Device) 또는 CMOS 이미지 센서(complementary metal-oxide semiconductor) 이미지 센서(image sensor)인 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템.

청구항 11

제1항에서,

상기 테라헤르츠 검출기는 볼로미터(bolometer)인 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템.

청구항 12

제1항에서,

상기 빔 스플리터 하단에 상기 빔 스플리터를 통과한 상기 테라헤르츠 대역의 신호를 상기 제2 결상광학계로 반 사시키는 반사거울을 더 포함하는 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하 는 광학 시스템.

명 세 서

기술분야

[0001] 본 발명은 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템에 관한 것이다.

배경기술

- [0002] 일반적으로 렌즈 및 반사경들이 설치된 광학 시스템은 지형 탐색을 위한 항공 또는 위성용 카메라나 천체를 관측하기 위한 광학 시스템에 이용되고 있다.
- [0003] 이러한 광학 시스템은 복수개의 반사경과 렌즈가 구비되어 별 또는 지표물 등과 같은 피사체에서 반사되어 나오는 빛을 집광하여 이미징(imaging) 한다.
- [0004] 따라서 관측자는 천체 망원경을 통해 빛에 의해 형성된 이미지를 직접 눈으로 관측하거나 카메라와 같은 별도의 장비를 이용하여 빛에 의해 형성된 이미지를 촬영하여 촬영된 이미지를 확인한다.
- [0005] 한편, 시각적으로 보다 정확한 이미지는 물론 서로 다른 파장에 따른 사물 관찰도 가능하도록 가시광선 및 적외 선 등 빛의 영역을 판독하는 광학 시스템을 가진 천체 망원경도 개발되고 있다.
- [0006] 그러나, 종래의 광학 시스템은 근적외선과 THz 등의 서로 다른 파장의 빛을 동시에 관측할 수 없어 사용자의 불

편함이 있었다.

발명의 내용

해결하려는 과제

[0007] 본 발명이 이루고자 하는 기술적 과제는 서로 다른 파장의 빛을 동시에 관측하여 사용자의 만족도를 증가시키기 위한 것이다.

과제의 해결 수단

- [0008] 본 발명의 한 특징에 따른 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학시스템은 광통부를 가지는 제1 주반사경과 상기 제1 주반사경의 둘레에 위치하는 복수개의 제2 주반사경을 구비한 주반사경부, 상기 주반사경부와 마주보게 위치하며, 상기 제1 및 제2 주반사경에서 반사된 빛을 상기 광통부로 반사시키는 부반사경부, 상기 광통부 하단에 위치하며 상기 광통부를 통과한 빛 중 테라헤르츠(tera hertz) 대역의 신호를 통과시키고 나머지 빛을 반사시키는 빔 스플리터(beam splitter), 상기 빔 스플리터로부터 반사된 빛에서 적외선을 필터링하여 상을 맺어주는 제1 결상광학계, 상기 제1 결상광학계에 의해 얻어진 상기 상을 활상하여 전기적인 신호로 출력하는 이미지 센서(image sensor), 상기 빔 스플리터를 통과한 상기 테라헤르츠 대역의 신호를 필터링(filtering)하는 제2 결상광학계, 그리고 상기 제2 결상광학계에 의해 필터링된 상기 테라헤르츠 대역의 신호를 검출하는 테라헤르츠 검출기를 포함한다.
- [0009] 상기 제1 주반사경과 제2 주반사경은 동일한 형태를 갖는다.
- [0010] 상기 제1 및 제2 주반사경은 원형, 다각형, 타원 중 어느 하나의 형태를 갖는다.
- [0011] 상기 제1 주반사경과 제2 주반사경은 서로 다른 형태를 갖는다.
- [0012] 상기 제1 및 제2 주반사경 중 어느 하나는 원형, 다각형, 타원 중 어느 하나의 형태를 갖고, 다른 하나는 원형, 다각형, 타원 중 어느 하나의 형태를 갖는다.
- [0013] 상기 부반사경부는 상기 주반사경부의 상기 제1 및 제2 주반사경 각각의 개수의 합과 동일한 개수의 제1 및 제2 부반사경을 가진다.
- [0014] 상기 제1 및 제2 부반사경은 상기 제1 및 제2 주반사경과 동일한 형태를 갖는다.
- [0015] 상기 제1 및 제2 부반사경은 상기 제1 및 제2 주반사경 중 어느 하나의 지름보다 작은 지름을 갖는다.
- [0016] 상기 제1 결상광학계는 적외선만을 통과시키는 필터를 포함한다.
- [0017] 상기 이미지 센서는 CCD(Charge-Coupled Device) 또는 CMOS 이미지 센서(complementary metal-oxide semiconductor) 이미지 센서(image sensor)이다.
- [0018] 상기 테라헤르츠 검출기는 볼로미터(bolometer)이다.
- [0019] 상기 빔 스플리터 하단에 상기 빔 스플리터를 통과한 상기 테라헤르츠 대역의 신호를 상기 제2 결상광학계로 반 사시키는 반사거울을 더 포함한다.

발명의 효과

[0020] 이러한 특징에 따르면, 근적외선 신호와 THz 대역의 신호를 동시에 관측하므로 사용자의 만족도가 증가한다.

도면의 간단한 설명

[0021] 도 1은 본 발명의 한 실시예에 따른 빔 스플리터를 이용하여 근적외선 신호 및 테라헤르츠 대역의 신호를 검출하는 광학 시스템의 사시도이다.

도 2는 본 발명의 한 실시예에 따른 주 및 부반사경부에 의해 광통부로 전달되는 빛의 경로를 계략적으로 나타 낸 광학 시스템의 사시도이다.

도 3는 도 2에 도시한 광학 시스템을 Ⅲ-Ⅲ선을 따라 주반사경부, 부반사경부 그리고 주반사경부 하단에 위치하는 광학계를 자른 도면을 도시한 단면도와 주반사경부, 부반사경부에 의해 광학계로 전달되는 빛의 경로를 계략

적으로 도시한 도면이다.

발명을 실시하기 위한 구체적인 내용

- [0022] 아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
- [0023] 그러면 첨부한 도면을 참고로 하여 본 발명의 한 실시예에 따른 빔 스플리터를 이용하여 근적외선 신호 및 테라 헤르츠 대역의 신호를 검출하는 광학 시스템에 대하여 설명한다.
- [0024] 도 1 내지 도 3을 참고로 하면, 한 실시예에 따른 광학 시스템의 구조는 빛을 반사시키는 주반사경부(100), 주 반사경부(100)의 상단에 주반사경부(100)와 마주보게 위치하는 부반사경부(200), 주반사경부(100) 하단에 위치하는 광학계(300)를 구비한다.
- [0025] 주반사경부(100)는 제1 주반사경(110)과 제1 주반사경(110)의 둘레에 위치하는 복수개의 제2 주반사경(120)을 구비한다.
- [0026] 여기에서 제1 주반사경(110)은 부반사경부(200)로부터 반사된 빛을 통과시키는 광통부(111)를 가진다.
- [0027] 이러한 제1 및 제2 주반사경(110, 120)은 서로 동일한 형태를 갖거나 서로 다른 형태를 가질 수 있다. 제1 및 제2 주반사경(110, 120)의 형태는 원형, 다각형, 타원형 중 어느 하나일 수 있다.
- [0028] 이렇게 구성되는 제2 주반사경(120)은 주반사경부(100)의 상단에 마주보게 위치하는 부반사경부(200)로 빛(1)을 반사시키기 위해 부반사경부(200)를 향해 기울어져 있다.
- [0029] 부반사경부(200)는 복수개의 부반사경(210)을 가지며, 이러한 부반사경(210)은 주반사경부(100)의 제1 및 제2 주반사경(110, 120)의 개수의 합과 동일한 개수로 이루어진다.
- [0030] 또한, 부반사경(120)은 제1 또는 제2 주반사경(110, 120)과 형태가 동일할 수 있다.
- [0031] 이러한 부반사경부(200)는 주반사경부(100)가 반사시킨 빛(1)을 광통부(111)로 반사시키는데, 그를 위해 부반사 경부(200)의 부반사경(210)은 광통부(111)의 방향으로 기울어져 있다.
- [0032] 또한, 부반사경(210)은 제1 및 제2 주반사경의 형태와 동일 할 수 있으며부반사경(210)의 지름은 제1 및 제2 주 반사경(110, 120)의 지름보다 작은 지름을 갖는다.
- [0033] 광학계(300)는 광통부(111) 하단에 위치한 빔 스플리터(beam splitter, 310), 빔 스플리터(310)로부터 반사된 빛에서 적외선을 필터링(filtering)하여 상(도시하지 않음)을 맺어주는 제1 결상광학계(311), 제1 결상광학계(311)에 의해 얻어진 적외선의 상을 촬상하여 전기적인 신호로 출력하는 이미지 센서(image sensor, 312), 빔 스플리터(310)을 통과한 테라헤르츠(tera hertz) 대역의 신호를 필터링(filtering)하는 제2 결상광학계(321), 그리고 제2 결상광학계(321)에 의해 필터링 된 테라헤르츠 대역의 신호를 검출하는 테라헤르츠 검출기(322)를 포함한다.
- [0034] 빔 스플리터(310)는 광통부(111)의 하단에 위치하며, 부반사경부(200)에 반사되어 광통부(111)를 통과한 빛(1)을 받아 테라헤르츠 대역의 신호는 통과 시키고, 나머지 빛은 반사시킨다.
- [0035] 이러한 빔 스플리터(310)에 의해 반사된 빛은 적외선만을 통과시키는 필터(filter)를 포함한 제1 결상광학계 (310)에 의하여 적외선만 필터링된 후 상이 맺히고, 제1 결상광학계(311)의 후단에 위치한 이미지 센서(312)가 제1 결상광학계(311)에 맺힌 상을 촬상하여 전기적인 신호로 출력한다.
- [0036] 여기에서 이미지 센서(312)는 CCD(Charge-Coupled Device) 또는 CMOS (complementary metal-oxide semiconductor) 이미지 센서(image sensor) 일 수 있다.
- [0037] 또한, 빔 스플리터(310)를 통과한 테라헤르츠 대역의 신호는 제2 결상광학계(321)에 의해 필터링 된 후 THz검출 기(322)에 의해 검출된다.
- [0038] 여기에서 THz검출기(420)는 볼로미터(bolometer)일 수 있다.
- [0039] 이렇게 구성한 광학계(300)은 빔 스플리터(310) 하단에 빔 스플리터(310)를 통과한 테라헤르츠 대역의 신호를 제2 결상광학계(321)로 반사시키는 반사거울(320)을 더 포함하여 광학계(300)를 구성하는 공간을 보다 효율적으

로 배치 할 수 있다.

[0040] 다음은, 광학시스템을 통해 빛에서 근적외선 및 THz 대역의 신호를 검출하는 동작이다.

[0041] 빛(1)이 주반사경부(100)에 닿으면 제1 및 제2 주반사경(110, 120)의 각도에 의하여 부반사경부(200)의 방향으 로 반사되고, 주반사경부(100)에서 반사되어 부반사경부(200)에 닿은 빛은 부반사경(210)의 각도에 의해 제1 주 반사경부(110)에 위치하는 광통부(111)를 통과하게 된다.

[0042] 이렇게 광통부(111)를 통과한 빛은 광통부(111)의 하단에 있는 빆 스플리터(310)에 전달되고, 빆 스플리터(31 0)의 특성에 의해 빛에 포함된 테라헤르츠 대역의 신호는 통과시키고, 나머지 빛은 빔 스플리터(310)에 의하여

제1 결상광학계(311)로 반사되게 된다.

[0043] 이렇게 제1 결상광학계(311)로 전달된 빛은 제1 결상광학계(311)에 포함된 필터에 의해 적외선이 필터링 된 후 상이 맺히게 된다.

이후 이미지 센서(312)에서 제1 결상광학계(311)에 맺힌 상을 촬상하여 전기적인 신호로 출력하게 된다.

[0045] 또한, 빔 스플리터(310)를 통과한 테라헤르츠 대역의 신호는 빔 스플리터(310) 하단에 위치한 반사거울(320)에 의해 반사되어 제2 결상광학계(321)로 전달되고. 제2 결상광학계(321)에 의해 필터링된 후 테라헤르츠 검출기

(322)에 의해 테라헤르츠 대역의 신호가 검출된다.

[0046] 이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

부호의 설명

[0044]

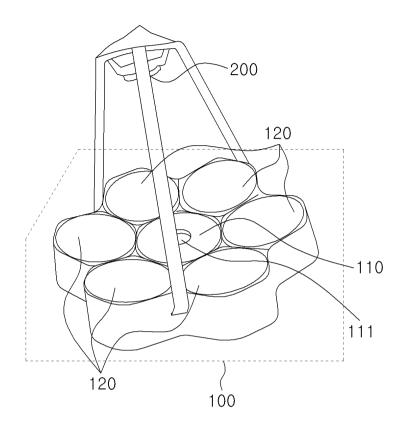
[0047]

110: 제1 주반사경 100: 주반사경부

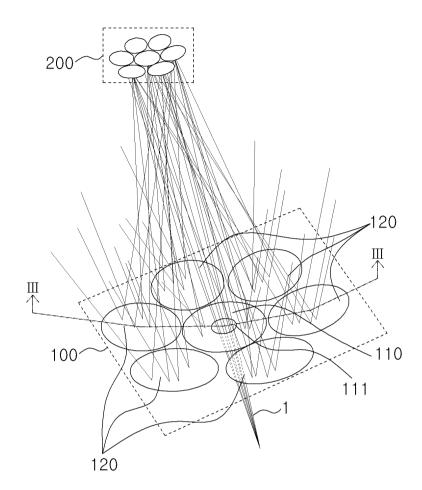
111: 광통부 120: 제2 주반사경

200: 부반사경부 210: 부반사경

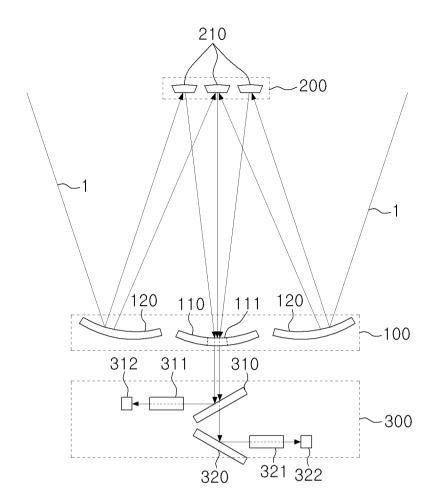
300: 광학계 310: 빔 스플리터


311: 제1 결상광학계 312: 이미지 센서

320: 반사거울 321: 제2 결상광학계


1: 빛 322: 테라헤르츠 검출기

도면


도면1

도면2

도면3

