▲ 연구책임자

청정연료연구실 이시훈

역흐름 다중방해판 (COMB)* 기술을 이용한

석탄/바이오매스 건조 및 반탄화 기술

(*COMB: Counter flOw Multi-Baffle)

미활용 폐자원을 이용한 고품위 고형연료 제조기술로 고체 원료와 가스 매질이 역흐름으로 흐르고 다수의 방해판에 의해 기고 접촉효율을 증가시킨 고효율 건조/ 반탄화 기술.

○ 기술의 구성도/개념도

○ 기술의 주요 내용 및 특징

- 기고 접촉효율 증가로 건조 및 반탄화 효율 증가
- 컬럼 전체 일정한 온도구배 유지로 구동력 유지 (컬럼 전체 활용도 증가)
- 상용 플랜트 에너지 효율 90% 예상 (파일럿 규모에서 73%)
- ∘ IEA 기준 반탄화 장치 평가점수 4.3(최고 4.5)으로 세계 최고 수준
- 용도에 맞게 조절 가능 (유동성, 이동성 증가)

○ 기술의 적용처

응용분야	적용제품	
바이오매스 연료 이용 분산발전 (열병합)	– 발전용 고품위 연료 – 바이오매스 가스화 연료	
		black pellet

○ 기술의 비교우위성/ 기존 기술 대비 차별성

● 실험 및 실증 데이터

> Raw pellet 10.8 15.6 1.7 74.8 23.1 Brown pellet 1.1 71.6 27.0 Black pellet

Moisture

기존 기술

0.3

Raw pellet Brown pellet Black pellet

○ 기술의 성숙도

○ 지식재산권 현황

• 체류시간이 짧고 (~5분) 온도가 낮아 • 체류시간이 길고 (로터리 킬른, 30~90분) 온도가 높아서 (급속건조장치, 400°C) 에너지 (~320℃) 에너지 소모가 적고 컬럼 이어서

본기술

(kcal/kg)

소요면적이 적으며 단위 unit 으로 분리 및 이동가능

Carbon

(반탄화 조건 (20kg/h COMB, column inlet Temp.: 320°C, gas flow rate 3m³/mn) Proximate Analysis (2t.%) Calorific Sample Value

Volatile

>>> 원료 열량 4507 kcal/kg에서 반탄화 제품 열량 6227kcal/kg으로 증가

				•		•	•	
1	2	3	4	5	6	7	8	9
-1=4					-177		5 = 1	

[TRL 5: 확정된 소재/부품/시스템시작품 제작 및 성능 평가]

파일럿 규모 공정 완성 (2018)

[TRL 7: 신뢰성평가 및 수요기업 평가]

원료 (EFB)

실증 규모 운전 (2019)

[TRL 8: 시제품 인증 및 표준화]

상업용 규모 PDP(Process Design Package) 개발 예정 (2020)

순	발명의 명칭	출원번호	출원일자	등록번호	등록일자
1	고수분 석탄 건조를 위한 역흐름 다중 방해판 건조기 및 건조방법	인도네시아 IDNP-00201401401	2014.03.11	호주 2012386631	2017.03.02
		말레이시아 MYP 12014703845	2014,12,17	중국 ZL 201280043717.3	2016,04,06
2	바이오매스 반탄회를 위한 역흐름 다중 방해판 열분해 장치	-	-	대한민국 10-1573677	2015,11,26
3	건조 반탄화 반응기 및 이를 이용한 고체연료의 건조 반탄화 방법	-	-	대한민국 10-1743503	2017,05,30
4	피건조물의 건조효율을 향상시킨 건조장치	대한민국 10-2017-0133120	2017.10.13	-	-
5	다단 건조 및 반탄화 반응기	대한민국 10-2018-0103961	2018.08.31	-	-

한국에너지기술연구원 기술사업화실

C TEL 042-860-3384

➤ E-mail kier-tlo@kier.re.kr

Principal researcher

Clean Fuel Laboratory of the Climate Change Research Division

Lee Si-Hun

Counterflow Multi-baffle (COMB)* -based coal/biomass drying and torrefaction technology

(*COMB: Counter flow Multi-Baffle)

The present technology is developed to prepare high-grade solid fuel by utilizing unused waste resources. In this high-efficiency drying and torrefaction technology, the solid raw materials and the gas medium circulate in a counterflow and the gas-solid contact efficiency is increased by multiple baffles.

Structural Diagram/Conceptual Diagram

Description and Characteristics of Technology

- The drying and torrefaction have become more efficient through increasing the gas-solid contact
- A constant temperature gradient is maintained throughout the column to keep the driving force stable (overall degree of column utilization increased).
- An energy efficiency of 90% is expected for commercial plants (about 73% in the pilot scale).
- The apparatus may be adjusted dependent on the purpose of the task (increase of flexibility and mobility).

Scope of Application

Application Fields	Products	
Biomass fuel based distributed power generation (cogeneration)	- high-grade fuel for power generation - biomass gasified fuel	
		black pellet

Comparative advantages of technology / Differentiation from existing technologies

Experimental and empirical data

Maturity level of technology

Current status of intellectual property rights

Conventional Technology

residence time (30 to 90 minutes in rotary kiln) and the high temperature (400°C at rapid drying apparatus).

• Excessive energy is consumed due to the long | • Energy consumption is less because the residence time is short (up to 5 minutes) and the temperature is low (up to 320°C). The column-type structure requires less space and allows for the unit separation and movement.

Present Technology

>>> The heat quantity is increased from 4507 kcal/kg of the raw materials to 6227 kcal/kg of the torrefaction products (torrefaction conditions: 20 kg/h COMB, column inlet temperature 320°C; gas flow rate 3 m³/mn).

		Calorific			
Sample	Moisture	Volatile Matter	Fixed Carbon	Ash	Value (kcal/kg)
Raw pellet	10.8	73.4	15.6	0.3	4507
Brown pellet	1.7	74.8	23.1	0.4	5080
Black pellet	1.1	71.6	27.0	0.3	6227

[TRL 5: Preparation and performance evaluation with determined materials, parts, and system prototype]

A pilot-scale process was completed (2018).

[TRL 7: Reliability evaluation and evaluation by demanding company]

A demonstration-scale operation was completed (2019).

[TRL 8: Prototype verification and standardization] A commercial scale Process Design Package (PDP) will be developed (2020).

No.	Title of Invention	Application Number	Application Date	Registration Number	Registration Date
1	Counter flow multi baffle dryer for drying of high moisture coal and	Indonesia IDNP-00201401401	2014.03.11	Australia 2012386631	2017.03.02
'	method thereof	Malaysia MYP 12014703845	2014.12.17	China ZL 201280043717.3	2016.04.06
2	Counter flow multi baffle pyrolyzer for torrefaction of biomass	-	-	Republic of Korea 10-1573677	2015.11.26
3	Reactor for torrefaction and solid fuel torrefaction method using reactor for torrefaction	-	-	Republic of Korea 10-1743503	2017.05.30
4	Drying apparatus with improved drying efficiency	Republic of Korea 10-2017-0133120	2017.10.13	10-1971160	2019.04.16
5	Multistage drying and torrefaction reactor	Republic of Korea 10-2018-0103961	2018.08.31	-	-

Business Development Team of the Korea Institute of Energy Research

042-860-3384

E-mail

kier-tlo@kier.re.kr