기술분류 + 기계 · 소재 > 요소부품

구조 안정성이 개선된

유도기전력 통한 발전장치

기술개요

본 기술은 미세 코일과 이의 제조방법에 관한 기술로서, 구체적으로 박판 상에 고정된 미세한 자석의 움직음을 통해 유도 기전력을 발생시켜 고수확 발전을 수행하는 발전장치에 적용될 수 있는 미세한 코일을 개발한 것으로 설치 위치가 바닥, 벽 또는 천정 등으로 달리되더라도 코일에 변형이 생기지 않아 자석과의 간섭을 막을 수 있는 기술이다, 특히, 코일 구조가 이방성 전도 필름을 개재하여 적층되어기 때문에 안정성을 가지며 수평방향으로도 권선수가 늘릴 수 있기 때문에 고수확 발전에도 유리한 효과를 가진다.

기술개발 배경

권선수가 제한되어 고수확 발전의 한계 극복

개발기술 특성

목록집

기존기술 한계

- + 진동에너지를 전기 에너지로 변화하는 기술로 미세코일 구조 적용이 이뤄 졌으나기존의 미세코일 구조는 수평 방향으로만 코일 형성이 가능하여 권 선수 증가의 제한이 존재함
- + 또한 입체적 형성의 경우 설치 위치 에 따라 코일 처짐, 변형이 발생하는 문제가 존재함

+ 중앙 영역에 중공이 형성되고, 중공 둘레를 따라 단위 코일 패턴이 형성 되어 있어 코일 패턴들을 전기적으로

상호 연결시키면서 기판들을 적층

개발기술 특성

+ 단위코일 패턴이 중공 둘레를 감는 회수 에 비례해 자속이 증가하며 이에 따라 생성되는 유도전류 역시 증가

기술구현

본 미세 코일 제조방법은 아래와 같다.

- + 구리층이 형성된 기판에 비아홀을 형성
- + 비아홀에 금속배선을 형성
- + 구리층을 식각하여 비아홀에 형성된 금속배선에 접촉된 단위코일 패턴을 형성
- + 단위코일패턴과 비아홀이 형성된 기판 사이에 이 방성 전도 필름을 개재시켜 기판에 형성된 단위 코일 패턴을 서로 연결
- + 단위 코일 패턴 내부의 기판 영역과 이방성 전도 필름 영역을 제거하여 단위 코일 패턴의 권선 방 향과 직교하는 중공을 형성

[본 미세 코일 제조 방법]

구리층이 형성된 기판에 비아홀 형성

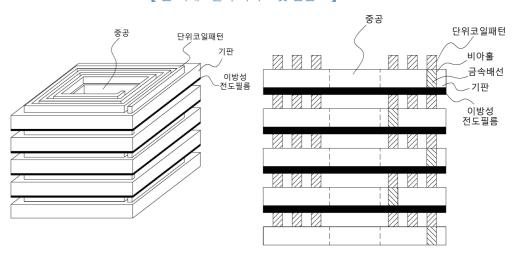
비아홀에 금속배선을 형성

비아올에 형성된 금속배선에 난위코일패턴 형성

기파 사이에 이방성 전도픽를 개재

기판의 단위 코일 패턴을 연결

단위 코일 패턴의 권선방향과 직교하는 중공형성



주요도면 사진

【 본 미세코일의 사시도 및 단면도 】

기술완성도

실용목적 아이디어 특허 등 개념정립

기술활용분야

유도기전력 발생을 통해 발전을 수행하는 발전장치

시장동향

- + 영국 시장조사기관인 아이디테크엑스(IDTechEx)에 따르면 전세계 에너지 하베스팅 시장 규모가 2020년에 43억 7000만 달러에 달할 것으로 전망했으며, 국내 한국과학기술기획평가원에서는 에너지 하베스팅을 미래 10대 유망기술 중 하나로 선정
- + 에너지 하베스팅 중 진동에너지 하베스팅은 대형 회전기나 구조물이 일으키는 진동이나 충격에너지 를 압전효과를 이용해 전기에너지로 변환시키는 것으로 2006년 일본의 보도블록 발전마루는 하루 최대 200kW 전력을 생산

지식재산권 현황

No.	특허명	출원일자	등록번호	IPC
_ 1	미세 코일 및 그 제조방법	2009. 11. 30.	10-1096108	H01F 41/04