KIERSOL

01

연소 후 CO2 포집 기술

문의 한국에너지기술연구원 기술사업화실

TEL 042-860-3465

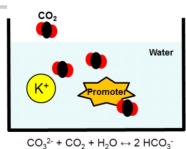
E-mail kier-tlo@kier.re.kr

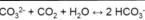
기술개요

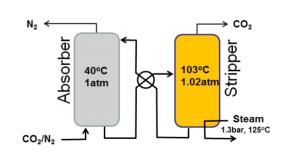
지구온난화 방지를 위한 CCS(CO2 Capture & Storage) 기술 중 액상포집기술 -속도 촉진형 탄산칼륨 수용액을 활용한 CO₂ 흡수 기술

-2030년 온실가스 자연증가분 대비 한국 감축목표 37% 중 1,000만톤 활용 예측

기술의 적용처


응용분야	적용제품	
발전, 제철, 시멘트, 석유화학	CO2 포집기술, CO2 포집용 흡수제	적용 공정





흡수제

기술의 구성도 /개념도

액상 흡수제의 메커니즘 및 공정 구성

-흡수제의 셔틀 메커니즘을 이용하여 기상의 CO₂를 수용액에 흡수 분리한 후, 재생탑에서 스팀 재생하여 연속 운전하는 공정

기술의 특장점

- 초미세먼지/CO2 배출 산업에 적용 가능한 경제적 CO2 흡수제 및 공정 기술
- 세계최고 수준(일, 미츠비시중공업사)보다 30% 경제성 우수한 CO2 포집기술

기술의 비교우위성/ 기존 기술 대비 차별성

기존 기술 본 기술

선도 그룹(MHI(일), Fluor(미)) -CO₂ 포집비용: 35~40\$/tCO₂ -공정 대용량 테스트: 670WW

-CO₂ 포집비용: 27\$/tCO₂ -테스트 공정 규모: 0.5MW

본 기술 (KIERSOL)

실험 및 실증 데이터

경쟁 기술과 KIERSOL 성능 비교

Based on water as a solvent		Alkanolamine		Benfield (UOP)	KIERSOL (KIER)
		MEA (Fluor)	KS-1 (MHI)	K ₂ CO ₃ /H ₃ BO ₄	K ₂ CO ₃ /amine
Regeneration E (GJ/tCO ₂)		2.8~2.9	2.4~2.6	3.8	2.2
Cost (USD/kg)		1.2	16.5	?	2.8
Make up (kg/tCO ₂)		1.5	0.35~0.4	2.4	0.2
Anti-corrosion(wt%)		0.5	?	0.5~1.0	0.0
SO ₂ effect (ppm)		10	1.5	?	After Quenching
Process (°C, 1atm)	Absorber	50~60	50~60	100°C (9 atm)	40~50
	Stripper	120	120	103	103

기술의 성숙도

- CO2 포집 공정 기본 설계, 성능 보증 및 개런티 수준까지 기술 확보
- 예상 적용처: 발전소, 제철소, 시멘트, 석유화학, 바이오가스 고질화, 보일러
- 선행 기술 이전 계약 완료: 현대기아자동차(2012.09), 기반(2015.09)

지재권의 관련현황

발명의 명칭 입체저항 사이클릭 아민에 의해 효율이 향상된 알칼리 탄산염계 CO₂ 흡수제 및 이를 이용한 이산화 탄소 제거 방법

등록번호 10-1157141 **등록일자** 2012.06.11 **출원번호** 10-2009-0131571 **출원일자** 2009.12.28