한국천문연구원

Sales Material Kit

반사 광학계의 조립방법

1

기술개요

🤰 기술 개요

기술명	반사 광학계의 조립방법			
출원번호(출원일)	10-2013-0138282 (2013-11-14) 권리현황		등록	
발명자	박귀종, 이대희, 문봉곤, 나자경	소속	-	
패밀리 정보	-			
산업분야	전기전자 > 광응용 기기 > 기타 광응용 기기			
키워드	반사 광학계, 반사 망원경			
기술개요	연결된 중앙홀(광통공)을 구비한 주경과 베이스 플레이트로부터 광축 방향으로 일정 거리 이격된 부경 베이스를 서로 연결하는 복수의 트러스를 형성하여, 부경 베이스에 부경을 포함하는 부경부를 결합시킨 후 광학 정렬 및 고정시키는 반사 광학계의 조립방법			
적용분야	항공우주분야, 광학기기 분야			
기술완성도(TRL)	Lab Scale의 시제품 개발 단계			

TRL1 기술원리 발표	TRL2 기술컨셉 설정	TRL3 기술컨셉 증명	TRL4 Lab Scale 시제품개발	TRL 5 구현환경 적용실험	TRL6 Full Scale 시제품개발	TRL7 유사상용품 개발	TRL8 상용품 완성	TRL 9 사용품 출시	\
5±	일정 //	<u> </u>	시제품/1일	식용결염	시제품개발	/H2 //	환경	물시	

기술 배경(종래 기술의 문제점)

- 반사부가 수십 나노미터 이내의 초정밀 가공
- : 반사광학계의 조립오차로 인하여 광학정렬범위를 벗어나거나, 과잉구속 (over-constraint)에 의한 반사경의 변형으로 반사 장치가 제 성능을 내지 못함
- 기존 반사 광학계 조립/정렬/본딩
- : 반사광학계의 정밀 조립에 대한 개념 또는 매뉴얼이 존재하지 않음, 치구 조립/정렬/본 딩 방법이 복잡하고 어려워 대량 생산 불가능

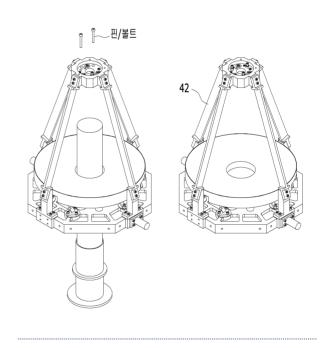
기술의 특징

- 반사 광학계 정밀 조립 가능

주경부 조립

• 주경 센터링 지그를 이용하여 상기 주경의 센터와 높이를 맞춘 상태에서 상기 주경을 상기 베이스 플레이트에 연결

트러스 구조체 조립


• 주경의 중앙홀에 센터링 로드의 일단 부를 결합한 후, 센터링 로드의 타단 부에 부경 베이스를 조립하고, 베이 스 플레이트와 부경 베이스를 복수의 트러스에 의해 연결

부경부 결합

• 광학 테이블로부터 돌출 형성되고 트 러스 구조체를 지지하도록 구성된 복 수의 포크 지그(fork jig) 상에서 수행

부경부 정렬

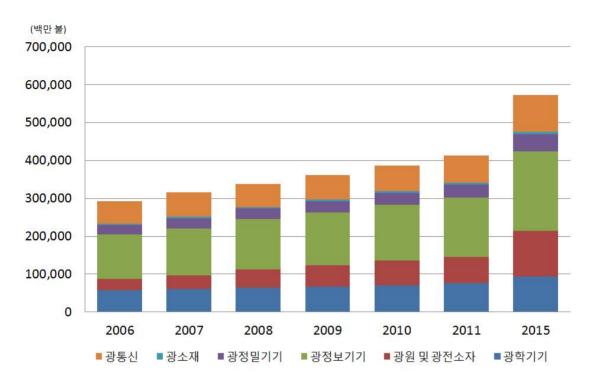
• 부경 베이스에 조립되는 정렬치구에 트러스 구조체 조립 단계에 대한 구성도 의해 부경부 광학 정렬 수행

기대 효과

- 기술적 효과 : 반사망원경 등 반사 광학계를 정밀하게 조립 가능
- 경제적 효과 : 반사광학계의 대량 생산이 가능함

적용 가능 분야 및 목표 시장

- 로켓, 인공위성, 반사 망원경 등의 광학기기
- 군사용, 의료용, 레이저응용, 통신 분야 등



3 국내 외 기술동향

기술 동향

- 한국천문연구원은 그레고리안 방식의 광학계로 주경과 부경 모두 오목거울을 사용하는 구경 25m의 세계 최대급 지상용 광학망원경 GMT(Giant Magellan Telescope)의 세부 설계의 검토를 완료했고, 2020년경에 완성하여 2024년부터는 본격적인 관측 연구에 활용될 예정임
- 2013년 6월, 한국표준과학연구원 우주광학센터와 한국항공우주연구원 위성탑제실 공 공연구팀은 인공위성 카메라에 들어가는 직경 800mm 초경량 반사거울을 개발하였으 며, 반사거울 뒷면을 벌집형태로 가공하여 무게를 70%이상 줄여 제작함
- 한국천문연구원과 삼성탈레스는 EO 및 IR 겸용 광학계로써 두 파장대역의 신호를 동시에 관측할 수 있으며, 기본적인 3차 수차가 보정된 4반사경으로 구성되어 있는 초경량 SiC 반사광학계를 개발 중임

▶ 시장 규모

<광산업 분류별 세계 시장 규모 및 전망>
(출처 : 정밀광학산업 기술로드맵 및 KAPID 보고서 참조)

- 광산업의 세계 시장규모는 2006년도 약 2천9백억 불 수준에서 2011년도 약4천억 불 수준으로 연평균증가율은 7.1%에 달할 정도로 높은 증가율을 보이고 있으며, 2015년 에는 거의 5천7백억 불 수준에 이를 것으로 예상됨
- 광산업 세계시장은 미주지역 29.5%, 아시아 26.8%, 일본 19.1%, 유럽 17.5%, 기타 7.1%의 비중이며, 중국 및 유럽지역의 비중이 점차 확대될 전망임

(단위: 십억원, %)

구분	2008	2010	2011
세계 시장	338,180	385,935	412,950
국내 시장	35,200	45,700	50,300
국내 점유율	10.4	11.8	12.1

<세계 시장 대비 국내 광산업 점유율>

(출처: 정밀광학산업 기술로드맵 및 KAPID 보고서 참조)

- 2011년도 광산업 세계시장규모는 약 413조원에 국내 시장규모는 약 50조원으로 세계 시장의 약 12.1%의 점유율을 갖고 있으며, 국내시장규모는 조금씩 증가하고 있으므로 세계 시장에 대한 국내 점유율 또한 조금씩 증가하고 있는 추세임
- 아시아는 한국, 대만, 중국 등이 주요 국가이며 중국의 광통신과 광정보기기에 대한 수요증가로 아시아 시장 성장률이 계속 증가할 전망임

경쟁상황

- 세계 지역별 광산업은 미국과 일본이 50%이상 점유하고 있으며 시장흐름을 주도하고 있고, 특히 일본은 광 정보 분야에서, 미국은 광통신분야에서 선두임
- 일본의 경우 우수한 기술력을 바탕으로 계속 주도권을 유지하고 있으며 호주와 대만 등도 광산업을 전략적으로 육성하고 있으므로 관련시장의 확대가 예상됨
- 독일은 산업용 광학분야에서 경쟁력을 보유하고 있으며 러시아 및 중국은 광학유리, 레이저용 단결정 등 광소재 분야에서 기술우위를 지키고 있음
- 2011년 국내 광산업체 수는 2,300개로 추정되며, 국내 광학산업 업체는 지속적으로 증가하고 있는 추세이지만 부품위주의 생산업체와 중소기업 형태가 대부분을 이루기 때문에 산업에 대한 경쟁력이 미비함

5 기술이전 문의 및 연락처

기술이전 조건

기술이전 유형	라이센싱 또는 공동연구		
기술이전 조건	협상에 의하여 결정		
기술적 지원	기술지도(기간 및 기타사항은 협의 가능)		

구 분	기술거래	Joint Venture	Venture	R&BD
형 태	기반기술을 토대로 사업화 가능기업에 기술사용권 대여	연구소와 기업의 공동 투자를 통한 시장개척 및 진입	연구소 주도의 창업보육 및 기업 성장후 기술이전	기술이전을 전제로 한 공동 연구개발
권 장	◎(적극 권장)	○(권장)		◎(적극 권장)

▶ 문의처

□ 담 당: 한국천문연구원 중소기업협력센터

김광동 전문위원

□ 연락처: 042)865-3357

□ 이메일 : kdkim@kasi.re.kr

