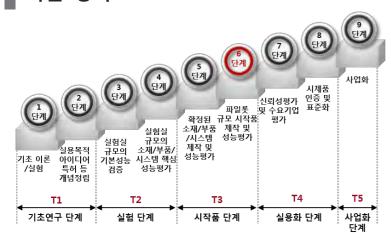
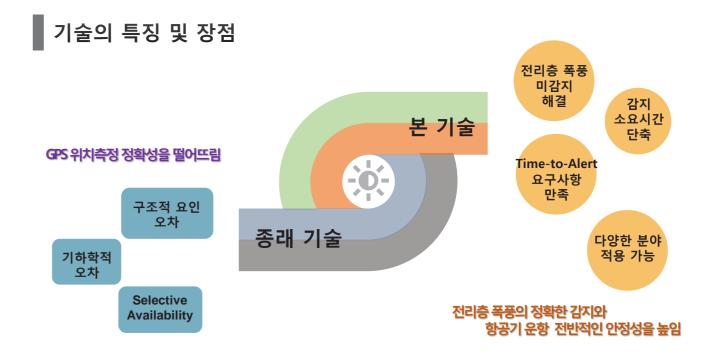

위성항법 기반 전리층 폭풍감지 시스템

기술 개요

- ✓ 본 기술은 전리층 폭풍 미감지 문제를 해결하고 감지 소요 시간 을 단축할 수 있는 것이 특징임
- 특히, 위성항법 기반 기지국 지향 시공간 차분을 이용함



관련 특허 & 논문


KR 10-2009-0132788 국내 등록(10-1104452) 주정민 외

위성항법 기반 기준국 지향 시공간 차 분을 이용한 전리층 폭풍감지 시스템 및 방법

기술 성숙도

- 본 기술은 <u>시작품 단계</u>임
- 전리층 폭풍감지 기술은 핵심성 능으로만 볼 때, 실제로 판매가 될 수 있는 정도로 목표 성능을 달성한 단계임
- 또한, 기술개발에 대한 파일롯 규모의 시작품 제작 및 평가가 완료되었음

주요 기술구성

P6 판별값 연산 후 임계값 비표, 전리층 발생 판단 **P4** • 위치 데이터와 고정 위치 정보에 대한 시공간 이중차 GPS 수신기에서 위치 데이터 및 고정 위치 정보 수신 •지상 기준국에서 위치 데이터를 수신하여 고정 위치 정보 연산 항법 위성군에서 코드와 항법 메시지를 이용하여 위치데이터 전송

•지상 기준국에 대해 위치 데이터를 전송하는 항법 위성군 선별

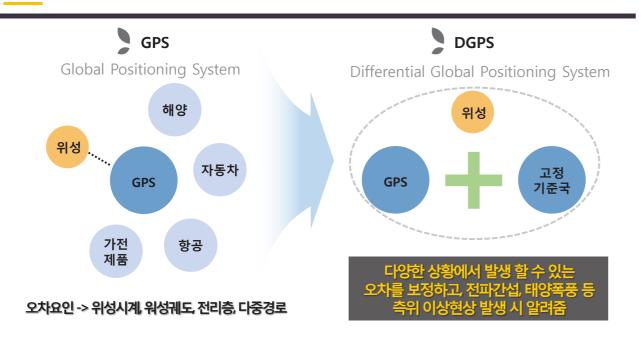
시장진입 제품적용

가능성

- 본 기술이 속한 분야에 있어서, 종래 항공용 지역위성항법보강시스템 대 비 전리층 폭풍과 같은 급격한 오차 발생 시 시스템 성능 요구사항을 만 족시킬 수 있어 항공기의 운행 안전도를 높일 수 있을 것으로 예상됨
- 종래 단일 주파수를 사용하는 항법시스템과 위성 위치 확인 시스템(GPS) 을 보유한 단말기를 이용할 수 있어 경제적인 측면과 효율적인 측면에서 강점으로 작용할 것으로 예상됨. 다만, 전리층 폭풍 특성 이외에 기타 이 상 상황에 대처 가능한 기술로의 확장과 더불어, 충분한 실험적 평가가 뒷받침 되어야 할 것으로 판단됨

시장 및 전망 CAGR 9.6% 1,038 1,089 964 1,038 1,089 2010 2012 2014 2016 2018 2020

	-		- 18 Table	
-/	시스템 명칭	개발국가	시스템 구축 연도	위성 수
	GPS	미국	1994년	27
	GLONASS	러시아	1995년	24
	갈릴레오	유럽연합	2014~2015년	32
	베이더우	중국	2020년(3단계)	35
	준텐초	일본	2009년	3개 이상
	IRNSS	인도	2013년	7


Source: GSA's Market Report

♥전세계 위성상법 장비 출하량

Source: GSA's Market Report

▶글로벌 위성측위시스템(GNSS) 개발 현황

안전성, 효율성, 안락함을 넘어서 위성항법 시스템은 모든 경제 영역에서 가치 있는 요소가 될 전망

기술 응용 분야

항법

국방

행정

- ❖ 차량자동항법
- ❖ 지능형교통시스템(ITS)
- ❖ 항공자동항법 및 정밀 이착률
- ❖ 전투기
- ❖ 전항
- ❖ 유도무기 등 첨단무기체계
- ❖ 측지, 측량, 지리정보시스템
- ❖ 육/해/공 긴급 구난/구조
- ❖ 위치확인을 통한 미아 찾기

정보통신

기타

- ❖ 통신 네트워크간 시각 동기화
- ❖ 우주측지❖ 기상관측
- ❖ 위치기반서비스(LBS)
- ❖ 자원탐사 및 레저 서비스

연구자 보유기술

기술명

전리층 폭풍에 의한 거리영역에서의 위성항법 이상신호 검출방법

전리층 폭풍에 의해 발생되는 위성항법 이상신호를 효율적으로 검출

연구자 참여기술

기술명

특징

GPS 반송파 측정값의 미지정수 결정방법

사용자가 속한 기준국과 인접한 기준국간에 차분된 미지정수를 이용 하여 연속적인 항법수행이 가능하도록 함

기술명

심리스 항법기법을 이용한 위치 결정 방법

특징

GPS 기지국의 경계를 넘는 경우에도 실시간으로 항체의 위치를 결정

기술명

고열 또는 고압에 의한 플래시메모리의 파손을 방지할 수 있는 블랙박

협업방법

- 본 기술의 상용화/제품화
- 본 기술의 기술이전/연구협력(공동연구)
- 한국항공우주연구원과의 파트너쉽 체결을 통한 Co-Working

블랙박스의 자료보호 모듈

- 기술 및 제품 사업화 마케팅 지원
- 특허/상표/디자인 등 지재권 창출 컨설팅

▶ 기술사업화 관련 문의

담당자 ▶ 성과확산실 조문희 선임 / 김일태 선임

E-mail > moonyxp@kari.re.kr / magickit@kari.re.kr

rel • 042-860-2272 / 042-870-3673

