# 시뮬레이션을 이용한 정밀도금 고급화 기술

Advanced & precision electroplating using simulation

## ₲ 기술내용

- 전기도금에서 기하학적인 형상에 의한 불균일한 전류밀도 분포로 인해 도금 두께는 제품 전체에서 균일하지 않아 미관, 품질 및 성능에 영향을 미침
- 도금두께 균일화를 위한 방법으로 양극배치, 차폐판, 보조음극, 보조양극 등의 방법이 사용되고 있으나, 시행착오에 의한 것이므로 최적화가 어려움
- 도금 시뮬레이션 기법은 이러한 시행착오적인 시간, 돈 및 재료 낭비를 획기적 으로 줄이고, 최상의 품질 및 최적의 도금조건을 제시함.
- 유동해석, 에칭해석 및 부식해석 등 전기화학공정 시뮬레이션 영역으로 확장 할 예정임

### 도금 시뮬레이션의 장점

- 시간, 경비 절약, 생산성 향상을 위한 solution
- 규격, 스펙에 만족하는 도금공정 선택 시행착오 횟수 감소
- 빠른시간 내에 품질 확립
- 공차 감소로 후가공 불필요
- 신속한 신제품 대응을 위한 solution
- 샘플 제품에 대한 신속한 대응
- 신제품에 대한 도금라인 엔지니어링 대응 (랙 디자인 등)
- 도금약품선정 혹은 도금약품의 우수성 입증 (약품업체)
- 도금설비의 우수성 입증 (설비업체)
- 강력한 마케팅 수단
- 경쟁사와의 차별화된 대응전략
- 시뮬레이션으로 미리 도금 결과를 제시함으로써 신뢰도 향상
- 후가공처리 공정 생략 가능
- 도금 시뮬레이션은 효과적인 지식관리 수단
- 눈으로 보여줌으로써 도금에 대한 이해도 향상
- 직원교육 자료로서 활용

# 도금시 전류밀도 분포 및 도금두께 불균일화현상

### 도금 시뮬레이션 절차 및 필요사항

| 절차                  | 내용                   | 필요사항                        |
|---------------------|----------------------|-----------------------------|
| Modeling            | 제품 및 도금조 3D 형상화      | CAD 도면<br>(Solidworks 변환파일) |
| Pre-processing      | 도금용액 특성 파악           | 도금용액                        |
| Meshing             | 연산을 위한 기본단위 생성       | -                           |
| Boundary conditions | 도금조건 파악              | 작업 전류밀도, 시간                 |
| Solving             | 연산                   | -                           |
| Post-processing     | 결과 편집                | -                           |
| Optimization        | 문제점 도출 및<br>도금조건 최적화 | 의뢰업체와의 협의<br>현장 적용가능성 등     |

### 기술지원 형태

- 단순 해석지원 : 도금 시뮬레이션을 이용하여 제품의 두께 분포 단순 예측
- 단기 기술지원 : 도금 시뮬레이션을 이용하여 최고 품질 구현을 위한 예상 공정조건 제시
- 장기 기술지원 : 재료연구소의 노하우와 시뮬레이션 기법을 이용하여 최고의 품질향상을 위한 토탈 솔루션 제공
- KR C-2012-008721 KIMS Master v1.0 (도금 시뮬레이션용 DB 프로그램)

### ₫ 사업성 -



### Technology Overview

- Non-uniform current density distribution during electroplating often causes inconsistency in the thickness of plating, affecting the exterior, quality or performance of the product.
- · Methods to ensure consistent thickness include electrode placement, shield, counter cathode and counter anode. These are hard to optimize as they depend on trial and error.
- · Simulation of electroplating can reduce loss of time, money and material resulting from such trial and error and help achieve the highest quality and find optimal plating conditions.
- This technology can be applied to simulation of electro-chemical processes including flow analysis, etching analysis and corrosion analysis.

### Advantages of plating simulation

- · A solution for saving time and money and ensuring higher productivity
- Reduced trial and error before finding the right plating process
- Early establishment of quality assurance
- No post-processing required thanks to reduced errors
- · A solution for rapid product response
- Rapid response to sample products
- Response by plating engineers to new products (i.e. rack design)
- Selection of plating chemicals or demonstration of the excellence of plating chemicals (chemical vendors)
- Demonstration of excellence of plating equipment (equipment vendors)
- · A powerful marketing tool
- Differentiated competitive edge
- Higher reliability by showing what plating will be like
- Post processing not required
- · Plating simulation as an effective means of knowledge management
- Better understanding of plating through see-it-for-yourself
- Usable as material for employee training

Current density distribution and non-uniform thickness of plating

### Procedures and requirements

| Action              | Description                                                       | What is needed                                             |
|---------------------|-------------------------------------------------------------------|------------------------------------------------------------|
| Modeling            | Product and plating bath put into 3D                              | CAD drawing<br>(Solidworks file)                           |
| Pre-processing      | Solution's properties                                             | Plating solution                                           |
| Meshing             | Basic units for computation                                       | -                                                          |
| Boundary conditions | Plating conditions                                                | Current density, time                                      |
| Solving             | Computation                                                       | -                                                          |
| Post-processing     | Result editing                                                    | -                                                          |
| Optimization        | Identification of problems and optimization of plating conditions | Consultation with the client<br>Applicability to the field |

### Types of technology support

- Simple support for analysis: Simple prediction of thickness distribution by using plating simulation
- Simple technical support: Recommendation of process conditions to ensure the highest quality by using plating simulation
- · Long-term technical support: KIMS's know-how and simulation techniques made available to help improve quality
- [S/W] KR C-2012-008721

## Business Cases

