28

♣ 연구책임자

기후변화연구본특 청정연료연구실 **천동현**

한국에너지기술연구원 기술사업화실

042-860-3384

kier-tlo@kier.re.kr

TEL

➤ E-mail

합성가스의 고부가화를 위한 KIER SponCat™ 촉매 기술

천연가스, 석탄, 폐목재, 이산화탄소/물 등에서 얻을 수 있는 합성가스로부터 저공해 액체연료, 고급 윤활기유, LAO(Linear Alpha Olefin) 등을 생산할 수 있는 피셔트롭쉬 합성반응용 촉매 기술.

○ 기술의 구성도/개념도

○ 기술의 주요 내용 및 특징

- 반응조건에서 자발적으로 활성화되는 나노 결정질 Fe계 촉매
- → 촉매 활성화처리에서 In-Situ 방식과 Ex-Situ 방식의 장점만을 취함
- 결정구조학을 바탕으로 나노 결정질 Fe계 촉매를 손쉽게 양산 성공
- 탄화수소의 탄소수 및 성상의 제어 가능

이 기술의 적용처

응용분야	적용제품		
석유화학/정유/CCU* (*CCU: Carbon Capture and Utilization)	저공해 액체연료, 고급 윤활기유, 화학원료물질(LAO: Linear Alpha Olefin)		
	석유화학/정유/CCU* (*CCU: Carbon Capture and	석유화학/정유/CCU* 저공해 액체연료, 고급 윤활기유, 화학원료물질(LAO: Linear Alpha	석유화학/정유/CCU* 저공해 액체연료, 고급 윤활기유, *CCU: Carbon Capture and 화학원료물질(LAO: Linear Alpha

● 기술의 비교우위성/ 기존 기술 대비 차별성

● 실험 및 실증 데이터

○ 지식재산권 현황

기존 기술

- 합성가스 또는 일산회탄소를 이용한 활성화 전처리 필요
- 목표 생성물에 따라 각기 다른 반응기 및 촉매의 조합이 필요

본기술

- 반응조건에서 자발적으로 활성화되는 신개념
 스마트 촉매(세계최초)
- 하나의 반응기 및 촉매의 조합으로 다양한 성상의 탄화수소 생산 가능

- » 반응조건에서 자발적으로 활성종인 Fe계 탄화물로 변환
- » 탄화수소의 성상을 LAO형, 왁스형, 이소피라핀형 등으로 각각 선택적 제어

1 2 3 4 5 6 7 8 9 I 기초연구 I 실험 I 시작품 I 실용화 I 사업화 I

[TRL 6: 파일롯 규모 시작품 제작 및 성능 평가]

파일럿급 실증 단계

- · 촉매 양산 성공: 500 kg 규모
- · 일부 기술 파일럿급 촉매 성능실증 완료: 6-9 bbl/d 규모

순번	발명의 명칭	출원번호	출원일자	등록번호	등록일자
1	철계 촉매의 제조방법 및 상기 제조방법으로 제조된 철계 촉매를 이용한 탄화수소의 제조방법	10-2017- 0079499	2017.06.23	10-1847549	2018,04,04
2	1 = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		2017.10.23	_	_
3		_	-		
4			2017,10,31	_	-
5			2017.10.23	_	_
6			2017.10.26	_	-

28

Principal researcher

Clean Fuel Laboratory of the Climate Change Research Division

Chun Dong-Hyun

Inquiries

Research

E-mail

042-860-3384

kier-tlo@kier.re.kr

Business Development

Team of the Korea Institute of Energy

KIER SponCat[™] catalyst technology for production of value-added products from syngas

The present technology is a catalysis technology for Fischer-Tropsch synthesis process to produce clean liquid fuel, high-grade lube base oil, and linear alpha olefin (LAO) from the syngas obtained from natural gas, coal, waste wood, carbon dioxide, and water.

Structural Diagram/Conceptual Diagram

Description and Characteristics of Technology

- Nanocrystal Fe-based catalyst is spontaneously activated under reaction conditions.
- → Only the advantages of in-situ and ex-situ methods are taken from the catalyst activation process.
- The nanocrystal Fe-based catalyst may be easily manufactured based on the crystal structure.
- The carbon number and the properties of hydrocarbons may be controlled

Scope of Application

Application Fields	Products	
Petrochemical industry; oil refinery; CCU* (*CCU: Carbon Capture and Utilization)	Clean liquid fuel; high-grade lube base oil; basic chemical raw materials (LAO: Linear Alpha Olefin)	

 Comparative advantages of technology / Differentiation from existing technologies

Experimental and empirical data

Current status of intellectual property rights

Conventional Technology

- Activation pretreatment using syngas or carbon monoxide is necessary.
- Different reactor and catalyst combinations are required depending on the target products.

Present Technology

- The present technology provides a novel smart catalyst (first in the world) that is spontaneously activated under reaction conditions.
- Carbohydrates of various properties may be produced from one reactor and catalyst combination.

- >>> Under the reaction conditions, conversion to a Fe-based carbide, an activated species, occurs spontaneously
- » The properties of hydrocarbons may be selectively controlled as LAO, wax, and iso-paraffin types.

1 2 3 4 5 6 7 8 9 I Basic Research I Experiment I Prototype I Turning into practice I Commercialization I

[TRL 6: pilot-scale prototype preparation and performance evaluation] Pilot-scale demonstration stage

- Mass production of catalysts has been completed successfully on a scale of 500 kg.
- The performance of some catalysts has been demonstrated on a pilot scale (6-9 bbl/d).

No.	Title of Invention	Number	Date	Number	Date
1	Method for preparing iron-based catalyst and method of manufacturing carbohydrate using iron-based catalyst prepared thereby	10-2017- 0079499	2017.06.23	10-1847549	2018.04.04
2	Methods of Manufacturing Iron-Based Catalysts and Methods of Manufacturing Hydrocarbons Using Iron- Based Catalysts Made by the Method	US 15/568,538	2017.10.23	-	-
3		CA 2,938,738	2017.10.23	-	-
4		ZA 2017/07393	2017.10.31	-	-
5		CN 2016800 23535.8	2017.10.23	-	-
6		IN 2017370 38049	2017.10.26	-	-