18

에너지저장 신재생에너지 최적 운영 기술

🔒 연구책임자

신재생에너지연구소 태양열융합연구실 이경호

본 기술은 향후 보급이 늘어날 것으로 전망되는 제로에너지형 소형 건물이나 주택, 건물군의 제로에너지형 계간축열식 타운을 대상으로 열 및 전기 에너지저장 신재생에너지시스템의 운영을 통합적으로 최적화하기 위한 기술.

○ 기술의 구성도/개념도

○ 기술의 주요 내용 및 특징

- 열저장 및 전력저장의 통합적 에너지운영 최적화를 위한 기술
- 건물형의 경우 저가화를 위한 입력정보 간소화 기술
- 타운형의 경우 계간축열을 포함한 년간 에너지운영 최적화를 위한 기술
- 데이터 기반 기계학습 및 단순화 물리모델을 기반으로 단기간의 데이터를 이용한 학습형 모델 예측 기술
- 기존 건물과 주택, 공동주택의 중앙에너지시스템에도 적용 가능

○ 기술의 적용처

응용분야	적용제품	
 열 및 전기 복합 신재생에너지 시스템의 운영 제로에너지형 소형건물이나 주택의 에너지 운영 계간축열식 제로에너지형 타운의 에너지운영 	 · 단독주택이나 공동주택의 에너지 관리 허브장치(예: 월패드)에 탑재되어 적용 가능 · 소형 사무용 건물의 독립형 에너지관리 장치로 적용가능 · 대규모 에너지저장식 신재생에너지 시스템의 로컬식 운전제어시스템과 연동하여 적용가능 	

○ 문의 한국에너지기술연구원

기술사업화실

C TEL 042-860-3384

🔀 E-mail kier-tlo@kier.re.kr

	본기술
I지운영 술 부재	 주택과 소형건물에 적합한 저가형의 에너지운영기술을 위해 입력정보 간소화 기술을 개발 중 모델기반 예측 기술 기반으로 운영을 최적화하기 위한 로컬제어기와의 연동을 포함한 기술로 개발 계간축열 및 단기에너지저장을 함께 고려하여 장단기 운영 기술로 개발
	>>> 주택 TRNSYS 상세 시뮬레이션 프로그램을 대상으로 3일간 데이터로 모델을 학습하여 전력소비량 예측 결과
	>>> TRNSYS 주택 모델을 대상으로 학습모델과 최적화기법을 적용하여 적용한 요금 절감 효과 (시간대별 요금제 가정)
	>>> 타운형의 TRNSYS 상세 프로그램을 대상으로 운전방식을 조절하여 전기요금 절감을 통한 수익개선 시뮬레이션 결과
4	5 6 7 8 9 시작품 I 식용화 I 사업화 I

~ [TRL 4: 실험실 규모의 소재/부품/시스템 핵심성능 평가] 타운형 에너지운영기술

• 2020년~ 2022년, TRL 5~6단계 도달 목표 · 2022년~, TRL 7~8단계 도달 목표

~ [TRL 5: 확정된 소재/부품/시스템시작품 제작 및 성능 평가] 주택 및 소형건물형 에너지운영기술

	출원번호	출원일자	등록번호	등록일자
에너지성능 시스템	10-2018-009-0231	2018.08.02	-	-
실내상태	PCT/KR2018 /001277	2018.01.30	-	-
	PCT/KR2016 /012555	2016.11.03	-	_

신재생에너지기술

44

45

18

Principal researcher

Solar Thermal Convergence Laboratory of the New and Renewable Energy Institute

Lee Kyoung-Ho

Optimal Operation Technology of Energy Storage Renewable Energy

Technology for optimizing the integrated operation of thermal and electric energy storage renewable energy systems intended for small zero-energy buildings or zero-energy towns with seasonal thermal energy storage, which are expected to be widely used going forward.

Structural Diagram/Conceptual Diagram

Description and Characteristics of Technology

• Scope of Application

- Technology for optimizing the integrated energy operation of thermal and power storage
- Technology for simplifying input information for cost reduction (for buildings) of energy management device
- · Optimizing annual energy operation energy operation, including seasonal thermal energy storage (for towns)
- Learning prediction model technology using long-term data based on data-based machine learning and simplified physics models with short-term data
- Applicable to the central energy system of existing buildings, houses, and multi-unit dwellings

O Inquiries

Business Development Team of the Korea Institute of Energy Research

📞 Tel 042-860-3384

E-mail kier-tlo@kier.re.kr

Application Fields	Products	
 Operation of thermal and electric hybrid renewable energy systems Energy operation of zero-energy small buildings or houses Energy operation of zero-energy towns with seasonal thermal energy storage 	 Embedded in the energy management hub device of single- unit or multi-unit dwellings (e.g., Wall Pad) Used as stand-alone energy management devices for small office buildings Used synchronized with the existing local operation control system of large-scale thermal energy storage 	

O Comparative advantages of technology / Differentiation from existing technologies • Experimental and empirical

Existing Rule Rule Rule Rule Mixed operation base-1 base-2 base-3 base-4 (Model Simulation results of profit improv

1 2 I Basic Research I Experiment

[TRL 3: Lab-scale basic performance verification] ~ [TRL 4: Key performance evaluation of lab-scale materials/components/systems] Energy management technology for town applications • 2020~2022, TRL 5-6 to be reached • 2022~, TRL 7-8 to be reached

[TRL 4: Key performance evaluation of lab-scale materials/components/systems] ~ [TRL 5: Prototype manufacturing and performance evaluation of confirmed materials/components/systems]

• 2020-2025, TRL 6-8 to be reached

No.	Title of Invention	Application Number	Application Date	Registration Number	Registration Date
1	Energy performance prediction using optimal physics learning models and machine learning and the energy operation and management system including the same	10-2018-009- 0231	2018.08.02	-	-
2	Method for controlling temperature and indoor condition in Renewable Building Energy System	PCT/KR2018 /001277	2018.01.30	-	-
3	Devices for controlling	PCT/KR2016 /012555	2016.11.03	-	-

Maturity level of technology

data

• Current status of intellectual property rights

Conventional Technology

- Absence of low-cost energy operation of houses and small buildings
- Existing energy management technolog on monitoring and visualization
- Absence of operation technology for th thermal energy storage system for towr

/	Present Technology		
devices for gy focused	 Currently developing technology for simplifying input information to implement low-cost energy operation device suitable for houses and small 		
ne seasonal ns	 buildings Technology that allows synchronization with local controllers to achieve optimal operation based on model-based prediction technology 		
	 Short-term & long-term operation technology considering both seasonal thermal energy storage and short-term energy storage 		
	» Power consumption prediction results		
	obtained from the model trained with three days of data using the TRNSYS-based detailed simulation program for houses		
; 			
sults			
	Description: See See See See See See See See See Se		
operation Aule base)	Simulation results of profit improvement resulting from the electricity charge reduced by controlling operation methods developed using the TRNSYS-based detailed simulation program for towns		
ment			
4	6 7 8 9		
I	Prototype I Turning into practice Commercialization		

Energy management technology for house and small building applications

44 45