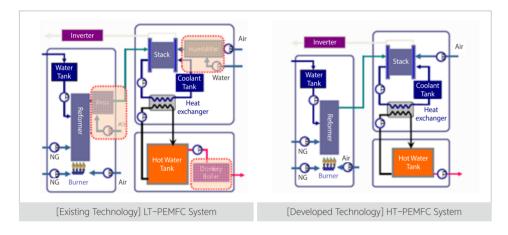
03

♣ 연구책임자


신재생에너지연구소 연료전지연구실 **김민진**

차세대 건물용 삼중열병합 발전용 고온 고분자 연료전지 스택 시스템

연료전지 시스템은 연료의 화학에너지를 전기화학반응에 의해 전기에너지지로 직접 변환하는 고효율 친환경 발전장치.

고온 고분자연료전지 기술은 높은 운전 온도(120-180℃)를 기반으로 기존 저온형 고분자연료전지의 기술적 한계를 극복한 차세대 건물용 연료전지로 기존의 전기 및 온열뿐만 아니라 양질의 회수 열을 활용하면 냉열 공급도 가능하여 삼중열병합 발전 시스템으로 활용가치 높음.

○ 기술의 구성도/개념도

○ 기술의 주요 내용 및 특징

- 높은 운전온도 기반 양질의 폐열 회수로 삼중열병합발전(Tri-Generation) 가능
- 기존 고분자연료전지의 열화에 치명적인 물관리 문제 해소
- 스택의 불순물 내성 강화에 따른 수소변환장치의 간소화 및 단가절감
- · 스택의 water free operation에 따른 시스템의 간소화 및 단가절감

기술의 적용처

응용분야	적용제품	S I I I	CellVille-tox
전기/온열/냉열 삼중열병합 발전 및 유관분야	건물용 연료전지 시스템 및 유관 제품	Stack	RE-System

● 기술의 비교우위성/ 기존 기술 대비 차별성

● 실험 및 실증 데이터

기술의 성숙도

● 지식재산권 현황

기존 기술

- 저온 고분자연료전지 스택
- 전기/온열 생산용 열병합 발전기 활용
- 개질가스 조성 내 CO 10ppm 이하 수준 관리 필요
- 시스템 복잡도 및 단가 증가로 인한 가격 경쟁력 미흡

본기술

- 고온 고분자연료전지 스택
- 전기/온열/냉열 생산용 삼중열병합 발전기 화요
- 개질가스 조성 내 CO 수% 이하 수준 관리 필요
- 개질기 반응기 간소화, 시스템 열 및 물관리계 간소화 및 가격경쟁력 확보

[TRL 7: 신뢰성평가 및 수요기업 평가]

- 스택 설계 및 최적 제어 기술 확보
- 스택 시작품 제작 및 검증 완료
- ・ 스택 시제품 제작 및 국내 실증 수행 중

순번	발명의 명칭	출원번호	출원일자	등록번호	등록일자
1	독립형 냉각판을 구비하는 고온 고분자 전해질 막 연료전지 스택 및 그 제조 방법	10-2016- 0017834	2016.02.16	10-1768128	2017.08.08
2	스택 온도 균일화를 위한 고온 고분자 전해질 막 연료전지 스택, 그 온도 제어 방법 및 기록 매체	10-2016- 0017738	2016.02.16	10-1664382	2016.10.04
3	스택의 수명 극대화를 위한 고온 고분자 전해질 막 연료전지의 운전 방법	10-2015- 0183119	2015,12,21	10-1665572	2016.10.06
4	Method for optimization of fuel cells operating conditions using hybrid model	14/283,524	_	-	_
5	하이브리드 모델을 이용한 연료전지 운전조건 최적화 방법	10-2014- 0036834	2014.20.14/ 05/21/03/28	10-1584728	2016,01,06

문의

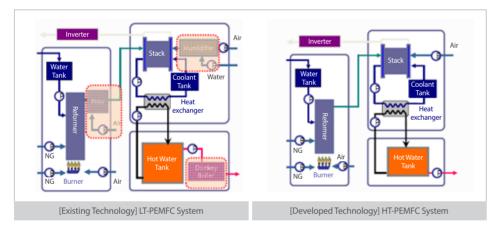
한국에너지기술연구원 기술사업화실

TEL 042-860-3384

E-mail kier-tlo@kier.re.kr

03

Principal researcher


Fuel Cell Laboratory of the New and Renewable Energy Institute

Kim Min-Jin

High Temperature Polymer Electrolyte Membrane Fuel Cell Stack

The fuel cell system is a high-efficiency eco-friendly power generator that directly converts the chemical energy of fuels into electric energy through an electrochemical reaction. The high temperature polymer electrolyte membrane fuel cell(HT-PEMFC) with high operating temperatures (120-180°C) is a next-generation fuel cell for buildings that overcomes the technical limitations of the existing low temperature polymer electrolyte membrane fuel cell(LT-PEMFC). Aside from electricity and heat energy, high-quality recovered heat energy can be provided, and thus it is possible to supply cold energy. All things considered, the technology has a high potential to be used as a trigeneration system.

Structural Diagram/Conceptual Diagram

Description and Characteristics of Technology

- · Allowing trigeneration of electrical, heating, and cooling power due to its high operating temperatures
- Resolving issues related to water management, which critically affects the degradation of existing polymer fuel cells
- Simplifying hydrogen generators and reducing unit prices due to the enhanced resistance of the stack to impurities
- \circ Streamlining the system and reducing unit prices through the water-free operation of the stack

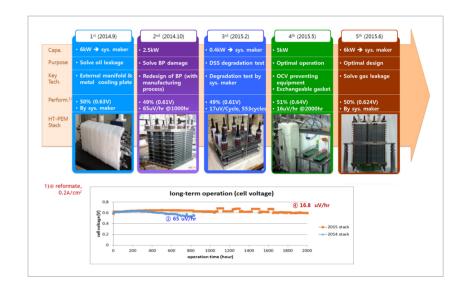
Scope of Application

Application Fields	Products		CellVille-ux
Trigeneration of electrical, heating, and cooling power and the relevant fields	Fuel cell systems for buildings and the relevant products	Stack	System

Comparative advantages of technology / Differentiation from existing technologies

Experimental and empirical data

Maturity level of technology


Current status of intellectual property rights

Conventional Technology

- Low-temperature polymer electrolyte membrane fuel cell stack
- Using a combined heat & power generator
- ° CO concentration in the reformed gas needs to be kept at 10ppm or below
- Low price competitiveness due to system complexity and increased unit prices

Present Technology

- High-temperature polymer electrolyte membrane fuel cell stack
- Using a trigeneration system for generating electrical, heating, and cooling power
- CO concentration in the reformed gas needs to be kept lower than a few percent
- Simplifying reformers, reactors, and heat & water management systems and ensuring price competitiveness

1 2 3 4 5 6 7 8 9 I Basic Research I Experiment I Prototype I Turning into practice I Commercialization

[TRL 7: Evaluation of reliability and companies in demand]

- Stack design and optimal control technology secured
- Stack prototype manufactured and verified
- Stack prototype manufactured and its domestic demonstration underway

No.	Title of Invention	Application Number	Application Date	Registration Number	Registration Date
1	High-temperature polymer electrolyte membrane fuel cell stack having independent cooling plate and method of producing it	10-2016- 0017834	2016.02.16	10-1768128	2017.08.08
2	High-temperature polymer electrolyte membrane fuel cell stack for improving the temperature distribution thereof, method of controlling temperature of the high-temperature polymer electrolyte membrane fuel cell stack and medium thereof	10-2016- 0017738	2016.02.16	10-1664382	2016.10.04
3	Method of operating high-temperature polymer electrolyte membrane fuel cell for maximizing stack life thereof	10-2015- 0183119	2015.12.21	10-1665572	2016.10.06
4	Method for optimization of fuel cells operating conditions using hybrid model	14/283,524	2014.05.21	10,108,759	2018.10.23
5	Method for optimization of fuel cells operating conditions using hybrid model	10-2014- 0036834	2014.20.14/ 05/21/03/28	10-1584728	2016.01.06

Inquiries

Business Development Team of the Korea Institute of Energy Research

Tel 042-860-3384

kier-tlo@kier.re.kr

ciency