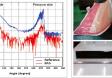
# 레이더 (전자기파) 흡수 복합재 구조 기술

Radar (EM Waves) Absorbing Composite Structures


TRL5

## ₩ 기술내용

- 스텔스 기술은 전자기파를 흡수/상쇄하여 반사파를 최소화 함으로써 적의 탐지를 최소화하고, 무기체계의 생존성과 임무수행능력 항상을 위한 핵심 군사 기술로, 최근 대두되는 EMI/EMC 문제를 해결할 수 있는 확장성이 높은 응용 기술
- 또한, 대형 풍력 발전용 블레이드에 의한 군수/민수용 레이더와의 신호간섭 문제를 해결할 수 있는 주요 기술








- 전자파흡수 성능의 레이더 (전자기파) 흡수 복합재 구조 설계/제조 기술 (ex. 스텔스 풍력 블레이드)
- 전파흡수구조 설계/제조/평가 기반 구축
- 스텔스 풍력 블레이드 설계/제조 기술 및 성능 검증
- 날개 앞전 전자파 흡수구조 설계/제조 기술 및 성능







스텔스 풍력 블레이드

스텔스 날개 앞전 구조

#### **>** 우수성

| 구분                 | 현재기술                             | 기술의 우수성                                             |
|--------------------|----------------------------------|-----------------------------------------------------|
| 전자파 흡수체 설계/제조 기술   | 국내 전자파 흡수체 실 크기 대형 구조물 적용 사례 없음  | 국내 최초/최대의 대형 전자파 흡수구조 기술 개발 및 획득                    |
| 스텔스 풍력 블레이드 성능     | 국내 전자파흡수 스텔스 풍력 블레이드 개발 사례 없음    | 풍력 블레이드 무게 총증가율 < 1.3 wt%, 모든 방향 90 % (10 dB) 이상 흡수 |
| 전자파 흡수 날개 앞전 구조 성능 | 국내 실 크기 전자파 흡수 날개 앞전 구조 개발 사례 없음 | 온도변화에 따른 성능 저감이 거의 없이 99 % (20 dB) 이상 흡수            |

• [특허] CNZL201180059625.X KR10-1383658 유전성 손실 시트를 활용한 전자파 흡수체, 형성방법 및 이를 이용한 전자파 흡수 기능을 구비한 풍력 발전기용 회전 날개

### ₫ 사업성

- 전자파 차폐/흡수재료의 세계시장은 2015년 6조 2천억원 규모에서 2019년 7조 3천억원 규모로 성장할 것으로 전망
- 연평균 성장률은 4.4 %에 이르며 (2014~2019), 공공 전기/전자 시설의 전자파 간섭 방지 대책이 국가적 차원에서 계획되고 있음을 고려할 때, 전자파 차폐/흡 수재료 시장의 성장률은 이보다 더 증가할 것으로 예상

- 육상/해상용 차세대 스텔스 무기체계 산업 발전에 기여
- EMI/EMC 관련 전자기기 및 토목/건축 내·외장재에 활용

#### 이전 가능 기술

- 고유전성 중간재 제조 기술, 전자파 흡수체 설계/제작 기술
- 스텔스 풍력 블레이드 기술, 날개 앞전 스텔스 구조 기술





스텔스 전투기, 전함

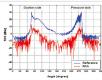
대규모 해상 풍력 발전 단지

# Radar (EM Waves) Absorbing Composite Structures


TRL5

### **Technology Overview**


- The stealth technology absorbs and/or mitigates electromagnetic waves (EMW) to minimize reflected waves and thus detection by the enemy while improving the survival of weapon systems and the capability to complete the mission. It has a high level of applicability that can address the recent EMI/EMC issues.
- It also provides a potential to address signal interference between military/civil radar and the blades for large-scale wind turbines.








- Designing and fabricating EMW absorbing composite (i.e. stealth wind turbine
- Providing a foundation for design, fabrication and evaluation of structure to absorb EMW
- Designing and fabricating stealth wind turbine blades and verifying their performance
- Designing and fabricating the structure to absorb EMW at the leading edge and verifying its performance







Stealth wind turbine blade

Stealth blade leading edge

## Highlights and Strengths

| Technology                                | Existing technology                                                           | KIMS's technology                                                                                   |
|-------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| EMW absorber design and fabrication       | No full-size EMW absorber has been applied in Korea                           | KIMS's absorber is Korea's first and largest                                                        |
| Performance of stealth wind turbine blade | No stealth turbine blade capable of absorbing EMW has been developed in Korea | Increase in the weight of wind turbine blade < 1.3 wt%. Over 90% (10 dB absorbing in all directions |
| EMW absorption at the leading edge        | No full-size EMW absorbing leading edge has been developed in Korea           | Capable of absorbing over 99% (20 dB) without loss of performance depending on the temperature      |

<sup>• [</sup>Patent] CNZL201180059625.X KR10-1383658 ELECTROMAGNETIC WAVE ABSORBER USING A DIELECTRIC LOSSY SHEET, METHOD FOR FORMING THE ELECTROMAGNETIC WAVE ABSORBER, AND ROTARY BLADE FOR A WIND TURBINE HAVING AN ELECTROMAGNETIC WAVE FUNCTION USING SAME

#### Business Cases

#### Global market for EMW shielding/absorbing material: 6.2 trillion won in 2015, 7.3 trillion won by 2019

• Annual growth: 4.4% (2014-2019). The growth rate will be higher given the government's push for measures to address EMW interference by public electric/electronic facilities.

- Contribution to the development of stealth weapon systems for army & navy
- Applicable to EMI/EMC related electronics and interior/exterior material for civil work/

#### Transferable technology

- Technology to fabricate intermediate product of high permittivity.
- Technology to design and fabricate EMW absorber
- Technology to realize stealth wind turbine blades and their leading edge





Stealth fighter jet, warship



Large scale offshore wind farm