초분광 영상의 엔드멤버 추출방법

대한민국특허 10-1281873

초분광 영상(Hyperspectral Image)의 분광혼합분석을 위한 최적 엔드멤버(endmember)개수 고속 추정방법에 관한 기술이다.

연구원(광물자원연구본부 김광은박사)은 초분광 영상자료에 존재하는 물질의 고유 분광반사특성(endmember)을 효율적으로 추출할 수 있는 알고리즘을 개발하였다.

본 기법은 기존에 존재하는 기법들의 장점을 혼합한 방식으로 광물의 분광분석시 사용상의 편리성 향상을 위해 연구되었다.

[관련연구]

- 심부 금속광체 정밀 물리탐사 및 채광기술 기발
- 초분광영상자료의 endmember 추출속도향상에 관한 연구
- 초분광영상자료의 endmember 자동추출을 위한 수정 Iterative N-FIDER 기법개발

[개발자]

한국지질자원연구원 김광은 박사

[keyword]

초분광영상, 엔드멤버 추출

연락처 : 홍준영변리사 jyhong@kigam.re.kr / 042)868-3805

I. 기술소개

1 기술개요

- 초분광 원격탐사 영사자료에서 화소내 물질의 종류와 물질별 점유비율을 정량 분석하는 기법의 기준이 되는 분광반사특성, 엔드멤버 고속 추출 방법 개발
 - 분석시간이 이미지 데이터 크기에 영향을 받지 않는 기법을 통한 연산 처리시 간 지연 방지 알고리즘 제시
- □ N-FINDER 기법의 장점과 IEA기법의 장점을 혼합한 형태로, 추출하고자 하는 endmember의 개수 등 사전 입력변수를 전혀 요구하지 않음
 - 반복계산 과정에서 단계별로 spectral unmixing 수행으로, 엔드멤버별 abundance fraction을 최종 결과물로 생성함

2 기술특징

□기술개발 배경

- 초분광 영상의 분광혼합분석은 물질 고유의 분광반사 특성을 이용해 하나의 화소가 차지하는 영역에 대해 그 물질과 물질별 점유비율을 정량적으로 분석 하는 기법으로 영상자료가 포함하는 광범위한 분광정보 이용가능함
- 분광혼합분석을 위해서 영상자료 영역 내에 존재하는 피복 물질에 대한 고유 의 분광반사특성에 대한 정보인 엔드멤버가 필요함
- 분광라이브러리와 영상 엔드멤버방식이 있는데 분광라이브러리는 반사특성을 측정하는 환경에 따라 분석결과가 달라져 영상 엔드멤버 방식이 널리 활용되 고있음

□ 경쟁기술현황

기술명		기술 설명 및 장단점	
PPI	설명	상용 소프트웨어에서 제공되고 있는 엔드멤버 추출 기법으로 PCA변환과 MNF변환을 이용함	
	장점	무작위로 생성한 벡터 자료를 투영하여 육안분석 가능	
	단점	임의로 생성하는 벡터들을 이용하고 최종적으로 분석자의 선택에 의해 엔드멤버가 추출되기 때문에 숙련도에 크게 의존함	
IEA	설명	모든 화소의 평균값 벡터를 초기 엔드멤버로 가정하여 분광혼합분석 수행 후 큰 오차를 가지는 화소를 이용하여 새로운 엔드멤버를 추가 하는 반복 과정	
	장점	PPI 초기단계의 압축과정을 거치지 않음	
	단점	전체영상에 대해 분광혼합 분석을 반복해야하기 때문에 계산시 간이 오래 걸림	
N- FINDER	설명	임의로 추출된 p개의 화소 조합을 시작으로 영상내 모든 화소를 대상으로 화소 조합을 구성하며 최종 엔드멤버 추출기법으로 가장 널리 사용되는 기법으로 관련 연구가 많이 진행되고있음	
	장점	엔드멤버의 개수 이외에는 입력변수를 요구하지 않음	
	단점	시스템이 복잡해 연산시간이 오래걸리고 결과 재현성이 부족함	

□ 경쟁기술대비 특징 및 장점

기존 기술

• 영상분석을 위한 각종 문턱값과 엔드멤버 개수를 입력변수로 요 구함

문제점

- 사용자가 입력한 변수에 따라 처리 결과의 품질이 좌우됨
- 자료가 방대해질 경우 적절한 개수 선택에 무리

장 점

- 앤드멤버 개수 등 사전 입력변수를 전혀 요구하지 않음
- 사용자 편리성 향상

본 기술

• 엔드멤버의 개수를 반복적으로 증가시키면서 매 반복 단계 마다 분 광혼합분석 수행으로 엔드멤버 자동추출 가능

3 기술구성

□ 기술의 상세 내용

- 기존의 N-FINDER 기법이 초분광 영상자료의 분광혼합분석을 위해 적절한 입력변수를 사용자가 추론하여 입력하게 됨으로써 적절한 입력변수 값 추정이 매우 어려웠지만 본 기술에서는 사전입력변수를 전혀 요구하지 않음

□ 최적 엔드멤버 개수 고속 측정방법

1 단계 : 전처리

초분광영상 자료를 압축하고 초기 엔드멤버의 개수 설정

2 단계: 초기설정

상기 초기 엔드멤버들을 엔드멤버 셋의 초기값으로 하여 단체의 부피를 계산하는 초기 설정 단계

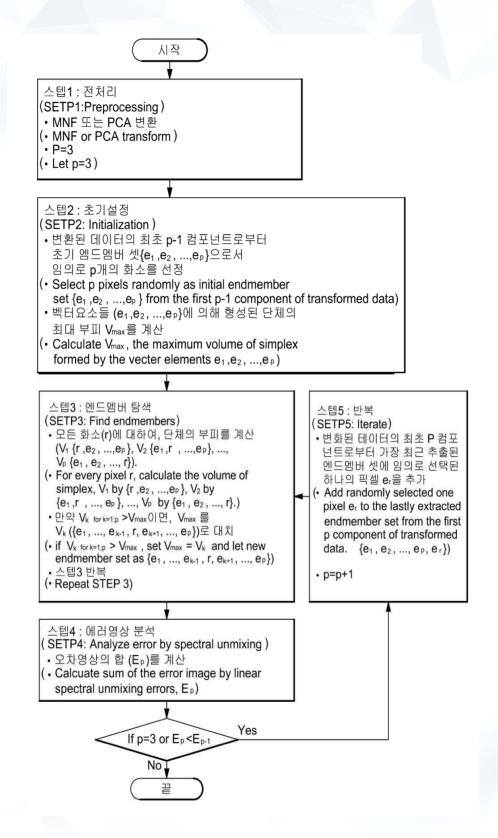
3 단계 : 탐색

영상의 모든 화소들에 대해 엔드멤버 셋의 원소를 차례로 대치해가며 단체의 부피를 계산하고, 부피가 증가하면 해당 화소의 분광특성값으로

해당 엔드멤버 원소를 추출하는 엔드멤버 탐색 단계

4 단계 : 분석

추출된 엔드멤버를 이용해 선형 분광혼합분석을 적용시켜 오차영상을 구하고 전체 화소를 대상으로 오차의 합을 구하는 에러영상 분석 단계

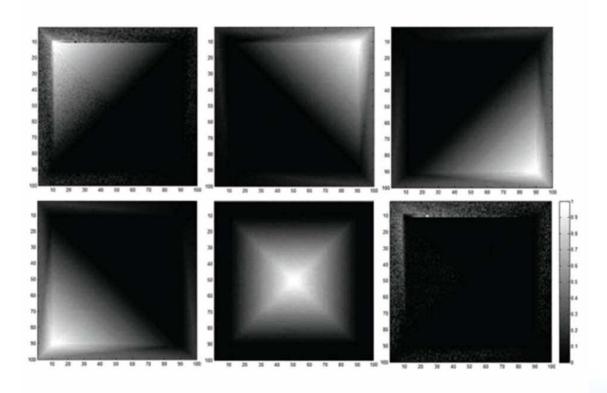


5 단계 : 판단

엔드멤버의 개수를 한 개씩 증가시키면서 상기 엔드멤버 탐색 단계와 에러영상 분석 단계를 반복하여,

오차의 합이 증가하면 반복을 중지하고

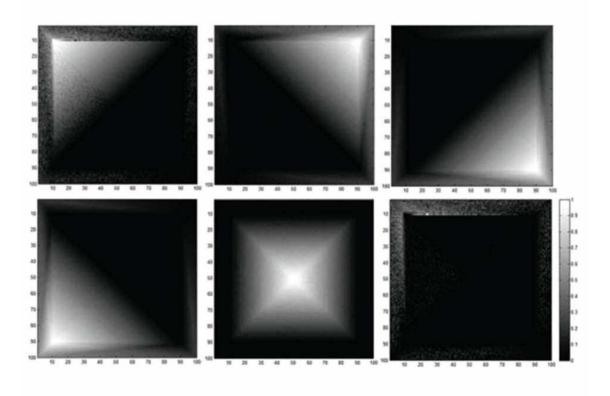
이전 과정의 엔드멤버를 최종 결과로 출력하는 판단 단계



[그림] 초분광 영상의 최적 엔드멤버 추출 방법 알고리즘

4 시제품 검증

□ 광물 점유비율 측정


측정대상	5가지 광물 : 명반석, 석고, 적철광, 일라이트, 카올리나이트
측정방법	분광혼합분석 결과 생선된 점유비율도로 실제 영상에는 존재하지 않는 6번째 엔드멤버의 영향으로 명반석에 대 한 점유비율의 계산 결과에 많은 오차가 발생함을 알수 있음

<그림> 5가지 광물의 점유비율

■ 엔드멤버 개수에 따른 오차 변화

측정방법	엔드멤버 개수 증아게 따른에 따른 반복적 분광혼합분석기 법 수행 및 오차 영상 측정
측정결과	6개 이상의 엔드멤버를 이용한 분광혼합분석에서는 5개 의 엔드멤버를 사용하여 수행한 것 보다 오차가 크게 나타남

<그림> 엔드멤버의 개수 증가에 따른 오차 영상

5 기대효과

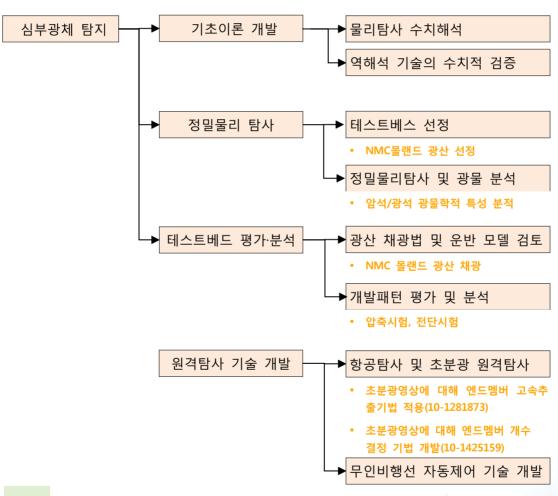
□ 복잡한 처리 과정의 단순화

- 처리 과정이 복잡하여 시스템 복잡화 및 처리시간 지연 등의 문제를 야기하던 기존의 초분광 영상의 엔드멤버 추출방법의 문제점 해결 가능

□ 개수 자동 추출을 통한 사용자 편의 고려

- 분석자가 사전에 엔드멤버의 개수를 사전에 결정하지 않아도 되는 장점이 있음

□ 최종 결과물의 정확성 향상

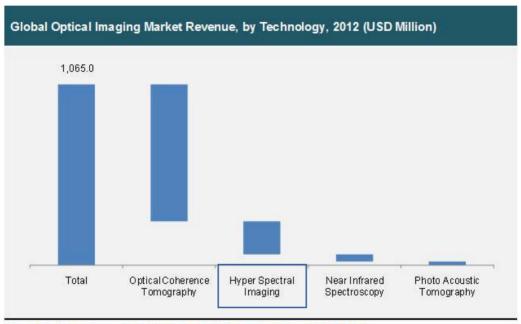

- 미국 USGS 분광라이브러리를 이용하여 생성한 모의 초분광 영상자료에의 시험적용 결과, 엔드베드의 개수와 반사특성, abundance fraction이 매우 정확하게 추출됨을 확인

■ 원격탐사 해석기법으로 활용

- 엔드멤버 자동 추출기법 개발을 통한 무인 항공 자력/전력탐사 시스템 개발 및 초분광 원격탐사 자료의 해석기법 개발 가능

Ⅱ. 관련연구 현황

1 심부 금속광체 정밀물리탐사 및 채광기술 개발(2014)


2 추후 R&D 계획

- ☑ 영상내 여러 가지 광물이 포함된 화소를 포함 한 경우의 분석 정확도 향상
- 실제 초분광영상자료에의 적용성 시험을 위한 연구진행
- 무인항공 및 초분광 원격탐사 기술 실용화

시장 및 산업 동향

皿. 산업동향 및 시장분석

■ 초분광 영상(HyperSpectral Imaging) 시장

Source: KOL Opinions, Company Annual Reports, Investing Publications, Press Releases & TMR Analysis

[그림2] 세계 광학영상 시장 규모

- 시장조사 전문업체인 미국 M&M사가 '2019년까지의 전 세계 초분광 영상장비 시장 전망'을 통해 전 세계 초분광 영상(hyperspectral imaging) 장비 시장이 2015~2019년 사이에 76% 성장하고, 규모는 2014년 4,720만 달러에서 2019년 8,320만 달러로 확대될 것으로 예측
- 계기 운용의 용이성과 안정성으로 인해 초분광 영상기술에 대한 수요는 증가 하고 있으나 높은 비용이 시장 성장에 있어 장애요인으로 분석되었다.
- 초분광 영상장비 시장은 크게 군용 감시, 환경 모니터링, 생명과학, 기상 학, 공정제어 등의 분야로 구분됨
- 전 세계 초분광 영상기술의 적용분야 중 비중이 가장 높은 산업은 군용 감시

부문으로 2014년 전체 초분광 영상기술 산업의 18.4%를 차지하였으며, 다음으로 환경조사분야가 17.8%를 차지함

- 현재 가장 큰 규모의 초분광 영상 시장을 보유하고 있는 곳은 미국이며 그 뒤를 유럽, 아시아가 따르고 있으며 향후 아시아 시장이 큰 폭으로 성장할 것으로 전망됨
- 초분광 영상 시장에서 세계적 우위를 점하는 기업으로는 SPECIM Spectral Imaging Ltd.(미국), Headwall Photonics Inc.(미국), IMEC(벨기에), Norsk Elektro Optikk A/S(노르웨이), Surface Options Corp(미국), Telops(캐나다) 등 이 있음

IV. 연구인프라

1 연구실 소개

□ 연구실명: 광물자원연구본부 탐사개발연구실

◘ 비전

- 전략광물자원 확보를 위한 자원탐사 및 개발 기술 고도화

□ 목표

- 광역탐사를 위한 무인항공 및 초분광 원격탐사 기술 개발
- 심부 금속광체에 대한 정밀 물리탐사 기술 개발
- 심부 대형화에 대응한 채광기술 개발

2 연구현황

□ 기능 및 연구내용

- 세계적 수준의 지진-공중음파 관측망 운영기술과 지진탐지 및 인공지진 식별 기술 능력을 확보하여 국가 안보분야에 기여
- 핵실험 탐지, 지진재해 연구분야 발전의 중추적 역할 수행