▲ 연구책임자

신재생에너지연구소 태양광연구실 조준식

한국에너지기술연구원

기술사업화실

042-860-3384

kier-tlo@kier.re.kr

TEL

E-mail

반투광형 무기박막 태양전지 기술

변환효율 및 장기안정성이 우수한 CIGS계 및 실리콘계 무기박막을 광흡수층으로 이용하여 발전 및 투광의 기능을 동시에 갖는 반투광형 박막 태양전지를 제조하는 기술.

○ 기술의 구성도/개념도

- 동시에 갖는 반투광형 박막 태양전지 제조
- 불투명한 금속 전극을 대신하여 양면에 모두 투명전극을 사용함으로써 투광성을 향상시키고 양면발전을 통한 발전성능 향상 가능
- 고품질 초박막 광흡수층 제조, 계면결함 제어, 도핑기술, 버퍼층 및 투명전도막 기술 등을 통한 성능 최적화 기술 확보

○ 기술의 적용처

응용분야	적용제품	6
건물용 태양광 발전 / 태양광발전 구조물 / 태양광 모빌리티	건물 창호, 파사드 / 도로 방음벽, 차폐막 / 자동차 선루프	

○ 기술의 비교우위성/ 기존 기술 대비 차별성

● 실험 및 실증 데이터

$\underline{\text{Voc}} = 0.60 \text{ V}$ $Jsc = 21.38 \text{ mA/cm}^2$ FF = 71.10%PCE= 9.12% 0.5 µm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Voltage (V)

본기술

양면에 투명전극을 사용함으로써 기존 방식에

비하여 투광성을 향상시키고 불필요한

• 초박형 광흡수층 사용을 통하여 공정시간 및

• 단면 및 양면 발전이 모두 가능하여 다양한

Wavelength (nm)

스크라이빙 공정을 최소화

응용분야에 적용 가능

비용 최소화

» 양면 투명전극을 이용한 고효율 반투광형 무기 박막 태양전지 기술

- 단일동시증착 (single-stage co-evaporation) 기술을 이용한 고효율 반투광형 CIGS 박막 태양전지 기술
- 플라즈마화학기상증착 (PECVD)기술을 이용한 고효율 반투광형 단일 및 다중접합 실리콘 박막 태양전지 기술
- 고효율 반투광형 무기 박막 태양전지 제조를 위한 공정 및 장비 기술
- 변환효율 9% 및 가시광 투과율 10%이상 동시 확보

Wavelength (nm)

기존 기술

사용하고 스크라이빙 공정을 통하여 투광성을

• 태양전지 한쪽면에 불투명한 금속전극을

• 높은 공정비용과 함께 단면 발전만 가능

[TRL 3: 실험실 규모의 기본성능 검증]

순번	발명의 명칭	출원번호	출원일자	등록번호	등록일자
1	하프미러층을 구비하는 태양전지 모듈	10-2017- 0056398	2017,05,02	-	_
2	투광형 CIGS계 박막 태양전지 및 그 제조방법	10-2017- 0127439	2017.09.29	-	_

○ 기술의 주요 내용 및 특징

- CIGS계 및 실리콘계 무기박막을 광흡수층으로 사용하여 고효율, 가시광 투광성 및 장기안정성을

○ 기술의

성숙도

17

Principal researcher

Photovoltaic Laboratory of the New and Renewable Energy Institute

Cho Jun-Sik

O Inquiries

Research

L Tel

E-mail

Business Development Team of the Korea

Institute of Energy

042-860-3384

kier-tlo@kier.re.kr

Bifacial and Semitransparent Inogranic Thin-Film Solar Cell Technology

Technology for manufacturing semitransparent thin-film solar cells with CIGS- and silicon-based inorganic absorber layers with excellent conversion efficiency and long-term stability, thereby providing both power generation and visible-light transmission.

Structural Diagram/Conceptual Diagram

Description and Characteristics of Technology

- Semitransparent thin-film solar cells using CIGS- and silicon-based inorganic absorber layers with nanoscale thickness are prepared with front and rear transparent conducting electrodes, thereby providing high efficiency, visible-light transmission, and long-term stability.
- Opaque metal electrodes are replaced by transparent conducting electrodes, thus allowing visible-light transmission and bifacial power generation of the solar cells.
- Performance characteristics of the solar cells have been optimized based on the variations of device design, including ultra-thin absorbing layers, p- and n-doped layers, buffer layers, transparent conducting electrodes, and their interfaces.

Scope of Application

Application Fields	Products	
Building-Integrated PV (BIPV)/ Urban living structure/ Mobilities	Building materials including windows, facades and skylights/ Soundproof walls and sunshades/ Automotive sunroof	

Comparative advantages of technology / Differentiation from existing technologies

Experimental and empirical data

- Maturity level of technology
- Current status of intellectual property rights

Conventional Technology

- Opaque metal electrodes are used on one side of solar cells, and thus their light transmission is allowed by mechanical and/or laser scribing processes.
- Process costs are high, and only single-sided power generation is allowed

Present Technology

- Transparent electrodes are used on both sides of the solar cells, thereby providing improved light transmission compared with conventional methods, and minimizing unnecessary scribing processes.
- Ultra-thin light absorbing layers are used, thereby minimizing the process time and cost.
- Bifacial and semitransparent solar cells allow both single-sided and double-sided power generation, and thus can be used in various applications.

- >>> High-efficiency bifacial and semitransparent inorganic thin-film solar cells with transparent conducting electrodes on their both sides
 - High-efficiency bifacial and semitransparent CIGS thin-film solar cells fabricated by a one-step co-evaporation method
- High-efficiency bifacial and semitransparent single- and multi-junction silicon thin-film solar cells fabricated by a plasma-enhanced chemical vapor deposition method
- Process and equipment technologies for manufacturing high-efficiency bifacial and semitransparent inorganic thin-film solar cells
- Semitransparent solar cells with 9% power conversion efficiency and 10% visible light transmission are fabricated.

[TRL 3: Lab-scale basic performance verification]

No.	Title of Invention	Application Number	Application Date	Registration Number	Registration Date
1	Solar cells with half-mirror layers	10-2017- 0056398	2017.05.02	-	-
2	CIGS-based thin-film solar cells with light transmission and the manufacturing method thereof	10-2017- 0127439	2017.09.29	-	-