역흐름 다중방해판(COMB) 기술 이용

01

석탄/바이오매스 건조 및 반탄화 기술

문의 한국에너지기술연구원 기술사업화실

TEL 042-860-3465

E-mail kier-tlo@kier.re.kr

기술개요

미활용 폐자원을 이용한 고품위 고형연료 제조기술로 고체 원료와 가스 매질이 역흐름으로 흐르고 다수의 방해판에 의해 기고 접촉효율을 증가시킨 고효율 건조/반탄화 기술

기술의 적용처

응용분야

바이오매스 연료 이용 분산발전(열병합)

적용제품

- 발전용 고품위 연료 - 바이오매스 가스화
- 연료

Black pellet

기술의 구성도 /개념도

COMB Column 및 공정도

▶인도네시아 람풍대학 교에 설치한 1ton/day pilot plant

기술의 특장점

- 기고 접촉효율 증가로 건조 및 반탄화 효율 증가
- 컬럼 전체 일정한 온도구배 유지로 구동력 유지 (컬럼 전체 활용도 증가)
- 상용 플랜트 에너지 효율 90% 예상 (파일럿 규모에서 73%)
- IEA 기준 반탄화 장치 평가점수 4.3(최고 4.5)으로 세계 최고 수준
- 용도에 맞게 조절 가능 (유동성, 이동성 증가)

기술의 비교우위성/ 기존 기술 대비 차별성

기존 기술

본 기술

체류시간이 길고 (로터리 킬른, 30~90분) 온도 가 높아서 (급속건조장치, 400℃) 에너지 과소비 체류시간이 짧고 (~5분) 온도가 낮아 (~320℃) 에너지 소모가 적고 컬럼 이어서 소요면적이 적으며 단위 unit 으로 분리 및 이동 가능

실험 및 실증 데이터

원료 열량 4507 kcal/kg에서 반탄화 제품 열량 6227kcal/kg으로 증가 (반탄화 조건 (20kg/h CO MB, column inlet Temp.: 320°C, gas flow rate 3m³/mn)

	Proximate Analysis (2t.%)				Calorific
Sample	Moisture	Volatile	Fixed	Ash	Value
		Matter	Carbon		(kcal/kg)
Raw pellet	10.8	73.4	15.6	0.3	4507
Brown	1.7	74.8	23.1	0.4	5080
pellet					
Black	1,1	71.6	27.0	0.3	6227
pellet					

원료 (EFB)

Raw pellet

Brown pellet Black pellet

기술의 성숙도

- 파일럿 규모 공정 완성(2018, TRL5)
- 실증 규모 운전 (2019, TRL7)
- 상업용 규모 PDP(Process Design Package) 개발 예정 (2020, TRL8)

지재권의 관련현황

발명의 명칭 고수분 석탄 건조를 위한 역호름 다중 방해판 건조기 및 건조 방법

등록번호 10-1401341 등록일자 2014,05,23 출원번호 10-2012-0082914 출원일자 2012,07,30

발명의 명칭 바이오매스 반탄회를 위한 역흐름 다중 방해판 열분해 장치

등록번호 10-1573677 등록일자 2015.11.26 출원번호 출원일자

발명의 명칭 건조 반탄화 반응기 및 이를 이용한 고체연료의 건조 반탄화 방법

등록번호 10-1743503 등록일자 2017.05.30 출원번호 출원일자

발명의 명칭 피건조물의 건조효율을 향상시킨 건조장치

등록번호 등록일자 출원번호 10-2017-0133120 **출원일자** 2017.10.13

발명의 명칭 다단 건조 및 반탄화 반응기

등록번호 등록일자 출원번호 10-2018-0103961 **출원일자** 2018.08.31