02

▲ 연구책임자

신재생에너지연구소 수소연구실 **정운호**

도시가스를 이용한 수소 제조 기술

연료전지용 수소공급 기술로써 도시가스와 물을 원료로 3단계의 촉매반응을 거쳐 76% 이상의 수소 농도와 10ppm 이하의 일산화탄소 농도를 갖는 수소 혼합가스를 생산하는 기술.

○ 기술의 구성도/개념도

○ 기술의 주요 내용 및 특징

- 도시가스를 원료로 연료전지에 공급가능한 수소를 생산
- 수소 농도는 건조가스 기준 76%이상이며 연료전지 백금촉매의 피독을 막기 위해 일산회탄소 농도는 10ppm 이하로 유지 가능
- 。 5~50kW급 용량까지 동일한 설계 기술을 적용하여 스케일-업 용이

이 기술의 적용처

응용분야	적용제품	
연료전지 시스템	천연가스 연료개질기 (수소제조장치)	15 15 15 20 50 8 Shari

● 기술의 비교우위성/ 기존 기술 대비 차별성

기존 기술	본기술
∘ 고온의 작동온도 도달에 따른 느린 시동시간	45분 미만의 빠른 시동시간: 최적의 구조설계 및 보조 전기히터 적용
• 소형화 제작에 따른 낮은 개질효율	∘ 개질효율 81%(LHV) 이상 : 반응 원료를 이용한 열교환망 최적화
 연료전지 시스템에서 가장 많은 부피 차지 	∘ 연료개질기 부피 10L/kW 이내 : 세계 최고 수준의 컴팩트화

● 실험 및 실증 데이터

기술의성숙도

| 1 2 3 4 5 6 7 8 9 | 1 기초연구 | 실험 | 시작품 | 실용화 | 사업화 |

[TRL 5: 확정된 소재/부품/시스템시작품 제작 및 성능 평가]

Lab scale 구현환경 적용실험

○ 지식재산권 현황

순번	발명의 명칭	출원번호	출원일자	등록번호	등록일자
1	원료의 혼합과 분배가 개선된 연료 개질기	_	_	10-1353917	2014.01.15
2	열교환 장치를 내장한 일산회단소 선택적 산회반응기 및 연료 개질 시스템	_	_	10-1403699	2014.05.28
3	연소 배가스 폐열 회수를 위한 열교환 장치가 구비된 연료 개질기	_	_	10-1480083	2014,12,31
4	균일한 가스흐름 형성을 위한 가스분배기를 구비한 연료개질기	_	_	10-1480085	2014,12,31
5	수소생산 개질기용 PrOx 촉매	-	_	10-1796071	2017,11,03
6	부하변동이 용이한 연료개질기	-	-	10-1880553	2018,07,16

> 문의 한국에너지기

한국에너지기술연구원 기술사업화실

TEL 042-860-3384

E-mail kier-tlo@kier.re.kr

Present Technology

• Short starting-up time less than 45 minutes:

through optimal structural design and the

Reforming efficiency of 81% or above (LHV):

through the optimization of the heat exchange

• Volume of the fuel reformer no larger than 10L/kW:

(10L/kW)

application of auxiliary heaters

network using reaction materials

World-class compact design

High efficiency (81% or above)

Hydrogen Laboratory

Jung Un-Ho

Hydrogen Production Technology Using City Gas

Technology for supplying hydrogen used for fuel cells, producing a hydrogen mixture gas with a hydrogen concentration of 76% or above and a carbon monoxide concentration of 10ppm or below through a three-step catalytic reaction using city gas and water as raw materials.

Structural Diagram/Conceptual Diagram

Description and Characteristics of Technology

- Producing hydrogen using city gas as a raw material to feed fuel cells
- As a dry gas, the hydrogen concentration is 76% or above, and the carbon monoxide concentration can be kept at 10ppm or below to prevent poisoning of platinum catalysts for fuel cells
- Allowing easy scale-up because the same design technique is applied to devices with a capacity range of 5-50kW

Scope of Application

Application Fields	Products	
Fuel cell systems	Natural gas fuel reformers (Hydrogen production devices)	1.5 0.5 1.0 1.3 5 10 20 50 Capacity (W)

Comparative advantages of technology / Differentiation from existing technologies

Experimental and empirical data

Conventional Technology

• Long start-up time as the operating temperature

Low reforming efficiency when manufactured in

• Occupying the largest volume of the fuel cell

Short start-up time (within 45minutes)

is high

small sizes

Maturity level of technology

Current status of intellectual property rights

[TRL 5: Prototype manufacturing and performance evaluation of confirmed materials/

components/systems] Applicability tests in lab-scale implementation environments

No.	Title of Invention	Application Number	Application Date	Registration Number	Registration Date
1	Fuel reformer in which mixture and distribution of raw material have improved	-	-	10-1353917	2014.01.15
2	Reactor for selective oxidation of carbon dioxide having heat exchange device therein and fuel reforming system including the reactor	-	-	10-1403699	2014.05.28
3	Fuel reformer having heat exchanger for waste heat recovery of combustion exhaust gas	-	-	10-1480083	2014.12.31
4	Fuel reformer having gas distributor for uniform gas flow formation	-	-	10-1480085	2014.12.31
5	PrOx catalyst for the hydrogen production reformer	-	-	10-1796071	2017.11.03
6	Fuel reformer with easy load change	-	-	10-1880553	2018.07.16

Principal researcher

of the New and Renewable Energy Institute

O Inquiries

Business Development Team of the Korea Institute of Energy Research

L Tel 042-860-3384

E-mail kier-tlo@kier.re.kr