나노입자-유리체 기반 단백질 복합체를 활용한 혈관신생억제용 조성물

혈관신생 관련 망막 질환, 혈관신생 억제제

사업화 정보 소개서 T2B Brief Technology to Business Brief

Summary

기술소개

- 나노입자 치료제: 혈관신생은 정상정인 생리작용의 일환으로 개체의 항상성을 유지하기 위한 필수적 과정으로, 다양한 음성 및 양성 조절인자들에 의해 조절되며, 혈관 신생 조절 실패시 암, 류마티스 관절염, 당뇨병성 망막병증등 질환 야기. 특히 망막에서의 혈관신생 조절 실패시 시력 상실 야기
- 금 또는 은 나노입자의 경우 VEGF에 의해 유도되는 혈관신생의 저해가 가능하며, 당뇨망막병증를 비롯한 망막의 혈관신생 치료제로 활용 가능

§ VEGF: 혈관내피세포성장인자

기술 경쟁력

- 유리체강 내 국소 주사 시, 혈관내피세포성장인자와 우수한 결합력 보유
- 기존 금 또는 은 나노입자의 독성 문제 개선
- 임상실험 결과
- 생쥐에서 레이저 유도 맥락막 신생혈관 모델을 만들고, 나노입자 또는 나노입자-유리체 기반 단백질 복합체를 생쥐 유리체강 내 주사
- 항 혈관내피세포성장인자 항체에 준하는 우수한 혈관신생 억제효과 확인

목표시장

• 1차: 혈관신생 관련 망막 질환 치료제(의약품) 2차: 혈관신생 억제제(의약품)

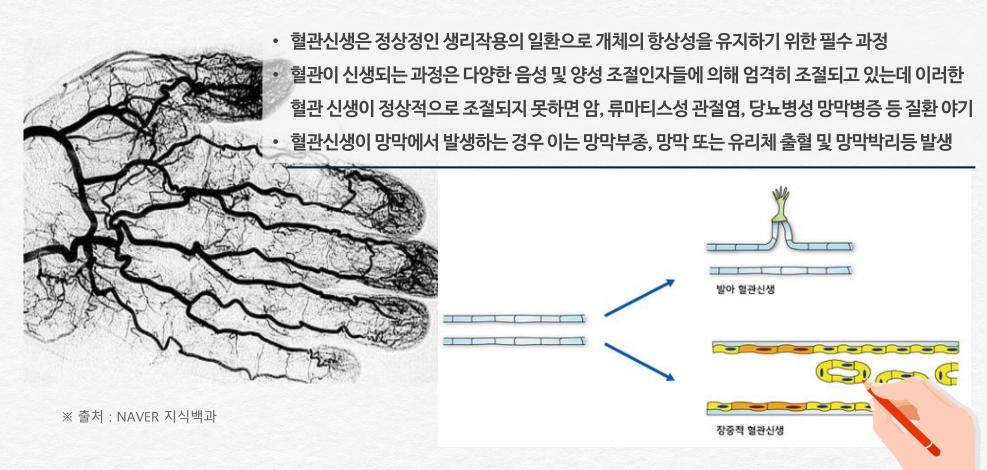
시장동향

- 혈관신생관련 망막질환
 - 망막질환관련 유병률 상승추세에 따라 2014년 기준 약 43억불이며, 연평균 7.8% 성장하여 2023년 약 85억불규모 전망
- 혈관신생관련 망막 질환
 - 2024년 글로벌 항암제 시장 규모는 2,385억달러로 2018년 대비 약 2배의 고성장세 전망 (대신증권)

정책동향

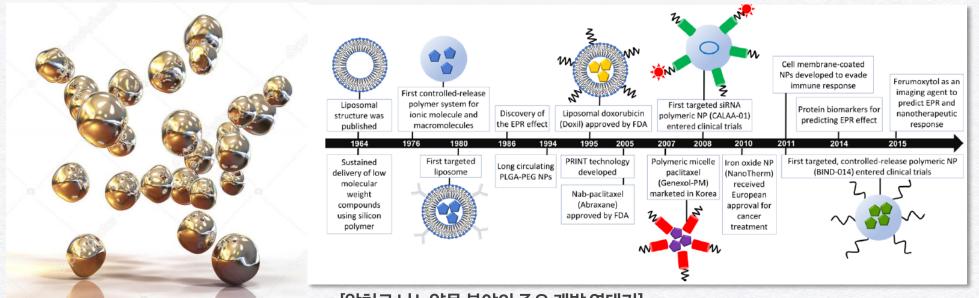
- 국내 정책동향
- 정부주도하 나노기술촉진법 제정(2002년) 바이오 대체물질 개발 단계로 2020년까지 식품, 화장품, 생필품 규격 표준화를 목표
- 국외 동향(미국)
- 2010년 국립건강센터 생체의공학 센터 분자복제 나노연구실 주도하에 쥐의 암 발생부위에 나노 자성복합입자를 주입하는 실험 진행, 본 실험 데이터를 인간 암 치료에 활용

CONTENTS


혈관신생 억제용 조성물

- 01 개발배경
- 02 기술소개
- 03) 환경분석
- 04 사업화 전략
- 05 기업지원 안내

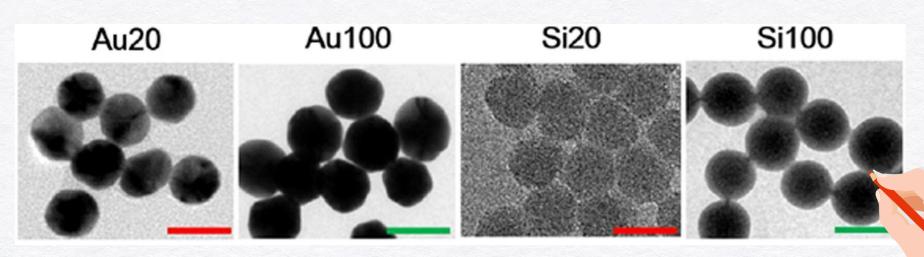
> 혈관신생



[혈관신생으로 형성된 손의 혈관구조(좌) 와 장중적 혈관신생과 발아 혈관신생의 모식도(우)]

나노약물의 활용

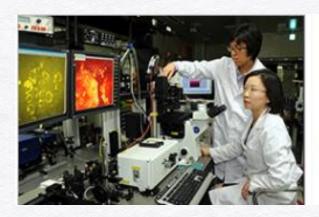
- 나노약물중 가장 큰 분야로 liposome 나노입자를 들 수 있음, Liposome-doxorubicin 등은 FDA 승인을 취득함
- 나노약물은 서로 다른 종류의 항암 약물을 동시에 담지, 전달하여 Synergistic 치료 효과를 나타내며, 단일 클론 항체의 한계점 중 하나인 체내 면역체계에 의한 antidrug antibody 가 생성될 수 있는 단점을 나노약물에 이들 약물을 탐지 함으로써 치료효과의 증대 가능
- 다만, 개개인별로 불균일한 암조직 치료를 맞춤화 하는 연구가 선행 되어야 하는 실정


[암치료 나노약물 분야의 주요 개발 연대기]

※ 출처: BRIC View 2018-R15

나노입자 - 단백질 상호작용의 활용

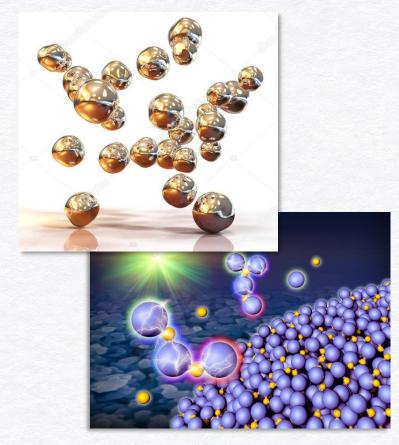
- 나노입자가 실제 생체 내 환경에 노출될 경우 단백질들이 입자 표면에 'Corona'를 형성
- Corona effect를 통해 나노입자 표면에 단백질들이 비특이적으로 흡착 되면서 나노 입자의 실제 크기, 콜로이드 안정성, 표면 성질, 세포내입 정도, 세포 내 분포, pk, 체내 조직 분포, 독성 등을 결정
- In vitro 실험에서 서로 다른 금 나노입자의 표면에 corona 형성을 관측, 세포와의 상호작용을 예측하는 연구는 있지만, 여전히 생체 내 분포나 PK, 실제 약물 효능에 대한 연구는 부재한 상황임



[20 또는 100nm의 직경을 갖는 금 및 실리카 나노입자의 TEM 이미지]

> 표준과학연구원 - 나노바이오측정센터

- 크기, 표면전하 및 표면리간드 등이 조절된 나노입자 분산 수용액 제조(Au 3종, SiO2 5종, TiO2 2종)
- 나노물질 크기분석을 위한 분석기술 개발 (TEM, DLS, SEM 및 AFM)
- 표면리간드 분석을 위한 측정방법의 국제표준규격 발간 (ISO/TS 14101)
- 세포수준 나노독성평가 국제공동연구 수행(KRISS, 스위스 EMPA, US NIST, EU-JRC등 4개국)
- OECD WPMN SG7 국제공동비교연구 참여 (EU-JRC 주관 9개국 11개 기관참여)
- OECD WPMN SG8 국제공동연구 수행 (KRISS 남아공 NMISA)


[한국표준과학연구원 나노바이오측정센터]

> 기술의 간단한 소개

나노입자-유리체 기반 단백질 복합체의 활용

- ☑ 나노입자와 나노입자의 표면을 둘러싼 유리체 기반 단백질로 이루어진 복합체를 유효성분으로 포함하는 혈관신생 억제용 약학적 조성물
- ☑ 유리체강 내 주사를 통한 나노입자의 국소 주사 시, 유리체 기반 단백질과 복합체(corona)를 형성하고, 이러한 나노입자 -유리체 기반 단백질 복합체가 혈관내피세포성장인자와의 결합을 통한 혈관신생 억제효과 실현
- □숙아 망막병증, 당뇨병성 황반부종(DME, Diabetic Macular Edema), 당뇨병성 망막병증 (diabetic retinopathy), 중심성 장액 맥락망막병증 (Central serous (chorio)retinopathy), 연령관련 황반변성(Age-related macular degeneration), 및 증식성 망막병증의 치료효과

※ 출처: News Vision@ 2018.01.09 급성장하는 나노의약 산업

〈금 및 실리카 나노입자의 이미지〉

실리카 나노입자와 코로나를 형성한 상위 20개의 유리체 기반 단백질

Protein name	Accession	Average relative amount (%)
Vitrin	J9NXV3	12.46
Secreted frizzled-related protein 2	Q863H1	7.75
Serum albumin	P49822	5.95
Retinol-binding protein 3	F1Q0V5	5.81
Alpha-crystallin A chain	P68280	5.04
Beta-crystallin S	A2IBY7	2.66
Complement C4-A	F1PWR2	2.31
Alpha-enolase	F1PCH3	1.99
Beta-crystallin B2	Q2LEC2	1.87
Retinal dehydrogenase 1	E2RMX7	1.87
atent-transforming growth factor beta-binding protein 2	J9P153	1.63
Glyceraldehyde-3-phosphate dehydrogenase	Q28259	1.59
Beta-crystallin B1	E2R5F6	1.54
Gelsolin	F6Y3P9	1.50
GF-containing fibulin-like extracellular matrix protein 1	E2R612	1.46
Opticin	P83286	1.43
Spondin-1	F6XC28	1.37
Serotransferrin	J9P430	1.33
Beta-crystallin A2	J9NXL7	1.32
Actin, cytoplasmic 2	O18840	1.29

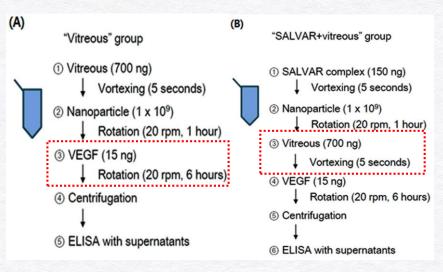
Protein name	Accession	Average relative amount (%
Vitrin	J9NXV3	13.02
Serum albumin	P49822	7.63
Secreted frizzled-related protein 2	Q863H1	7.43
Retinol-binding protein 3	F1Q0V5	5.48
Alpha-crystallin A chain	P68280	4.20
Beta-crystallin S	A2IBY7	2.94
Beta-crystallin B2	Q2LEC2	2.02
Complement C4-A	F1PWR2	1.79
Alpha-enolase	F1PCH3	1.78
Retinal dehydrogenase 1	E2RMX7	1.64
Latent-transforming growth factor beta-binding protein 2	J9P153	1.62
Beta-crystallin B1	E2R5F6	1.56
Actin, cytoplasmic 1	O18840	1.41
Beta-crystallin A2	J9NXL7	1.35
Serotransferrin	J9P430	1.33
Opticin	P83286	1.31
Gelsolin	F6Y3P9	1.29
Isoform 2 of Fibulin-2	F1PRU3	1.22
Spondin-1	F6XC28	1.16
Alpha B-crystallin protein	E2RNB6	1.14

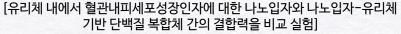
Protein name	Accession	Average relative amount (%)	
Vitrin	J9NXV3	10.54	
Secreted frizzled-related protein 2	Q863H1	5.85	
Serum albumin	P49822	4.36	
Alpha-crystallin A chain	P68280	4.34	
Retinol-binding protein 3	F1Q0V5	4.32	
Beta-crystallin S	A2IBY7	3.23	
Beta-crystallin B2	Q2LEC2	2.87	
Complement C4-A	F1PWR2	2.33	
Latent-transforming growth factor beta-binding protein 2	J9P153	2.30	
Spondin-1	F6XC28	2.17	
Beta-crystallin B1	E2R5F6	1.95	
Alpha-enolase	F1PCH3	1.79	
Beta-crystallin A2	J9NXL7	1.73	
Gelsolin	F6Y3P9	1.59	
Ig gamma-1 chain C region	E2RCC8	1.49	
Retinal dehydrogenase 1	E2RMX7	1.46	
Gamma-crystallin C	A3RLE2	1.44	
EGF-containing fibulin-like extracellular matrix protein 1	E2R612	1.31	
Calsyntenin-1	Ј9 ЛНQ1	1.30	
Collagen alpha-1(II) chain	F1PS24	1.16	

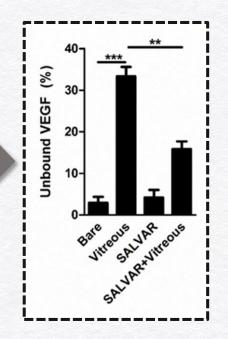
[20nm의 직경을 갖는 금 나노입자(Au20)와 코로나를 형성한 상위 20개의 유리체 기반 단백질] [20nm의 직경을 갖는 실리카 나노입자(Si20)와 코로나를 형성한 상위 20개의 유리체 기반 단백질] [100nm의 직경을 갖는 금 나노입자(Au100)와 '로로나를 형성한 상위 20개의 유리체 기반 단백질]

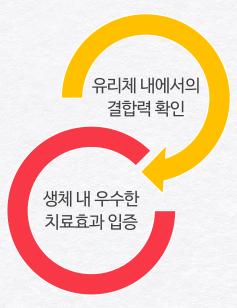
Protein name	Accession	Average relative amount (%
Vitrin	J9NXV3	8.97
Secreted frizzled-related protein 2	Q863H1	6.18
Serum albumin	P49822	3.82
Retinol-binding protein 3	F1Q0V5	3.80
Calsyntenin-1	J9JHQ1	3.77
Alpha-crystallin A chain	P68280	3.34
Collagen alpha-1(II) chain	F1PS24	2.78
Latent-transforming growth factor beta-binding protein 2	J9P153	2.56
Alpha-enolase	F1PCH3	2.08
Gelsolin	F6Y3P9	2.02
Spondin-1	F6XC28	1.91
Complement C4-A	F1PWR2	1.65
Beta-crystallin B1	E2R5F6	1.62
Beta-crystallin S	A2IBY7	1.62
Complement factor B	E2RS80	1.61
Retinal dehydrogenase 1	E2RMX7	1.41
Beta-crystallin B2	Q2LEC2	1.39
Pigment epithelium-derived factor	F2Z4Q7	1.30
Actin, cytoplasmic 2	O18840	1.26
Isoform 2 of Fibulin-2	F1PRU3	1.23

[100nm의 직경을 갖는 실리카 나노입자(Si100)와 코로나를 형성한 상위 20개의 유리체 기반 단백질]

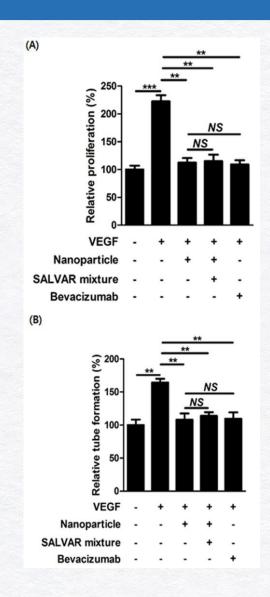

Protein name	Accession	Average relative amount
Vitrin	J9NXV3	11.25
Secreted frizzled-related protein 2	Q863H1	6.80
Serum albumin	P49822	5.44
Retinol-binding protein 3	F1Q0V5	4.85
Alpha-crystallin A chain	P68280	4.23
Beta-crystallin S	A2IBY7	2.61
Beta-crystallin B2	Q2LEC2	2.04
atent-transforming growth factor beta-binding protein 2	J9P153	2.02
Complement C4-A	F1PWR2	2.02
Alpha-enolase	F1PCH3	1.91
Beta-crystallin B1	E2R5F6	1.67
Spondin-1	F6XC28	1.65
Calsyntenin-1	J9JHQ1	1.64
Gelsolin	F6Y3P9	1.60
Retinal dehydrogenase 1	E2RMX7	1.59
Beta-crystallin A2	J9NXL7	1.40
Collagen alpha-1(II) chain	F1PS24	1.36
Actin, cytoplasmic 1	O18840	1.25
GF-containing fibulin-like extracellular matrix protein 1	E2R612	1.22
Opticin	P83286	1.21

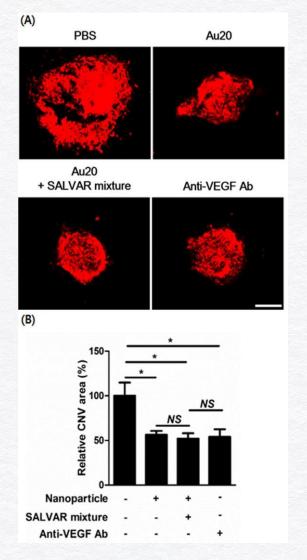

[도1 내지 도5를 종합한 나노입자와 코로나를 형성한 상위 20개의 유리체 기반 단백질]




> 유리체내 결합력 실험

- 나노입자 또는 나노입자-유리체 기반 단백질 복합체를 혈관내피세포성장인자와 4℃에서 20 rpm의 회전을 가하여 6시간 동안 배양
- 배양 후 15,000 rpm 조건에서 20분 간 원심분리하여 나노입자 또는 나노입자-유리체 기반 단백질 복합체와 결합한 혈관내피세포 성장인자를 침전시켜, 유리된 혈관내피세포성장인자를 상층액에서 효소결합면역흡착측정법을 통해 측정




> 동물실험결과

☑ 생쥐의 망막에 400 mW의 세기로 50 ms 지속시간의 diode 레이저를 조사하여 망막층과 맥락막층 사이의 Bruch 막을 손상시킨 후 나노입자(109개/MI, 1 MI), 나노입자-유리체 기반 단백질 복합 (109 개/MI, 1 MI), 항혈관내피세포성장인자항체(1 μg)를 유리체강 내로 주사하고, 레이저를 조사 후 7일째에 맥락막 신생혈관의 형성 정도를 면역형광 염색을 통해 확인

생체 내 항 혈관내피세포성장인자 항체에 준하는 우수한 혈관신생 억제효과 확인

기존기술 대비 우위성

기존기술 한계

- ☑ 기존 경구투여 약물의 경우 생체 내에서 혈관신생 저해 미입증
- ☑ 기존 VEGF저해제의 경우 해외 제품 의존도가 높은 관계로, 비용과다 문제 발생
- ☑ 투여 간격이 짧으므로 보험수가 비적용등 문제 발생
- ☑ 기존 나노 입자의 경우 생체 내 독성 문제 야기

본 기술의 우위성

- ☑ 우수한 혈관신생 억제 효과동물 실험등을 통하여 생체 내 항 혈관내피세포성장인자 항체에 준하는 우수한 혈관신생 억제효과 확인
- ☑ 인체 내 독성 저감 기존 나노 입자 치료제 기술의 고질적인 생체내 독성 문제 의 저감
- ☑ 비용절감 → VEGF저해제의 국내 기술 대체에 따른 가격 경쟁력 보유

우수한 혈관신생 억제효과를 보유함으로써, 망막 및 맥락막 혈관신생 관련 다양한 질환의 치료제 활용

▶ 기술완성도(TRL)

V	
본 기술은	
시제품 제작 및	
성능평가가	
완료된	
TRL 5단계	

TRL 9	사업화	■ 본격적인 양산 및 사업화 단계
TRL 8	시작품 인증/표준화	■ 일부 시제품의 인증 및 인허가 취득 단계 - 조선 기자재의 경우 선급기관 인증, 의약품의 경우 식약청의 품목 허가 등
TRL 7	Pilot 단계 시작품 신뢰성 평가	 시작품의 신뢰성 평가 실제 환경(수요기업)에서 성능 검증이 이루어지는 단계
TRL 6	Pilot 단계 시작품 신뢰성 평가	■ 경제성(생산성)을 고려한, 파일로트 규모의 시작품 제작 및 평가 ■ 시작품 성능평가
TRL 5	시제품 제작/ 성능평가	 개발한 부품/시스템의 시작품(Prototype) 제작 및 성능 평가 경제성(생산성)을 고려하지 않고, 우수한 시작품을 1개~수개 미만으로 개발
TRL 4	연구실규모의 부품/시스템성 능 평가	 연구실 규모의 부품/시스템 성능 평가가 완료된 단계 실용화를 위한 핵심요소기술 확보
TRL 3	연구실 규모의 성능 검증	 연구실/실험실 규모의 환경에서 기본 성능이 검증될 수 있는 단계 개발하려는 시스템/부품의 기본 설계도면을 확보하는 단계 모델링 / 설계기술 확보
TRL 2	실용 목적의 아이디어/특허 등개념 정립	■ 실용 목적의 아이디어, 특허 등 개념 정립
TRL 1	기초 이론/실험	■ 연구과제 탐색 및 기회 발굴 단계

> 지식재산권 현황

No.	특허번호	특허명	특허상태	0
1	10-1748120	나노입자-유리체 기반 단백질 복합체를 유효성분으로 포함하는 혈관신생억제용 조성물 및 이의 용도	등록	

> 기술자산 보유 현황

No.	구분	기술자산 보유 내역
1	데이터	■ 당뇨망막병증동물모델실험데이터 2016.09(서울대학교)
2	노하우	■ 다량의 혈관신생 억제 구현 노하우 보유

> 기술사업화 진입시장

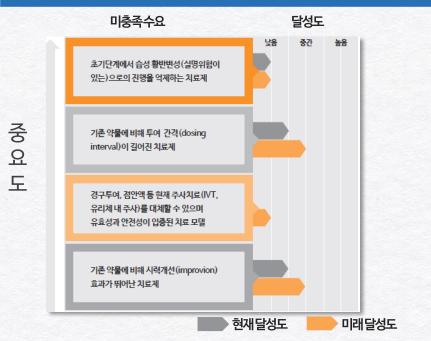
☑ 본 기술의 1차 타깃으로는 망막에서의 혈관신생 억제를 통한 치료제 시장이며, 2차 타깃으로는 혈관신생 억제를 통한 항암 시장으로, 각 목적에 따른 목표시장 설정 필요

> 응용시장 목표시장 •혈관신생 억제제(항암, 심혈관 질환)• 혈관신생 관련 망막 치료제 미숙아 망막병증 항암제 당뇨병성 황반부종 기타 혈관신생 억제제 당뇨병성 망막병증 중심성 장액 맥락망막병증

\$

혈관신생 망막 치료제 시장동향

☑ 망막질환관련유병률상승추세에따라 2014년 기준약 43억불이며, 연평균 7.8% 성장하여 2023년 약 85억불 규모전망



2014년 **43 억 달러**

연평균 7.3% 성장률 2023년

85억 달러

※ 출처: Datamonitor Healthcare(2017), 미국·유럽5개국 기준 / Decision Resources(2017)

선진국을 중심으로 노인성 망막 시장의 점진적 증가 추세 국내 기술 확보를 통한 비용 절감 및 시장 창출 효과

>항암제, 심장질환 치료제 시장동향

☑ 2024년 글로벌 항암제시장 규모는 2,385억달러로 2018년 대비 약 2배의 고성장세 전망 (대신증권)

기업명	계약상대방	시기	물질	적응증	임상단계	계약규모	계약금	계약금 바중
레고켐바이오	밀레니엄 파마슈티컬	2019/03	ConjuALL (ADC 플랫폼가술)	암	후보물질	404	7	2%
ABL 바이오	트리거 테라퓨틱스	2018/11	ABL001	고형암	임상1상	595	5	1%
유한양행	안센	2018/11	YH25448	폐암	임상2상	1,255	50	4%
앱클론	상하이헨리우스	2018/11	AC101	위암,유방암	전임상	40	10	25%
ABL 바이오	트리거 테라퓨틱스	2018/07	5개 항암 후보물질	암	전임상	550	4	19
크리스탈지노믹스	입어U즈코알	2018/06	CG026806	AML	전임상	125	3	29
제넥신	아이만 바이오파마	2017/12	GX-I7	암	임상1상	560	12	29
대화제약	HWX HOISTIM	2017/09	리포락셀	암	8171	25	4	149
유틸렉스	화해제약	2017/09	EU101	란	전임상	9	-	-
한미약품	제넨텍	2016/09	HM95573	고형암	전임상	910	80	99
크리스탈지노믹스	앱토즈바이오	2016/06	OG026806	AML	전임상	330	3	19
한미약품	스펙트럼	2015/02	포지오티닙	배암	임상2상	-	-	-

※ 출처: 대신증권 Reseearch & Strategy 본부 / 이데일리 2019-07-22 5년뒤 항암제 시장 2배...

기존 항암제의 낮은 효능과 및 부작용등으로 신규 항암제에 대한 수요 증가<u>추세 지속</u>

> 세계 주요 시장 참여자 <망막 치료제>

제약사	제품명	성분명	Target	구분	기타
Norvatis	RTH-258	Brolucizumab	VEGF-A	mAb	시판전망('19)
Allergan	Abicipar pegol	Abicipar pegol	VEGF-A	Protein	시판전망('20)
Ohr Pharmaceutical	Squalamine	Squalamine lactate	Na+/H+펌프 칼모듈린 (CaM)	Small Molecule (NME)	점안액제제
Chengdu Kanghong Biotech	KH-902	Conbercept	VEGF	mAb	
Bioeq Gmbh	FYB-201	Ranjbizumab	VEGF	mAb	바이오시밀러 (루센티스)
Ophthotech	Fovista	Pegpleranib sodium	PDGF	Aptamer	루센티스 병용투 약 임상중단

※ 출처: Biomedtracker(2017.7월 검색)

> 국내 주요 시장 참여자 <망막 치료제>

제약사	제품명	단계	분류	기타	임상승인일
바이오씨앤디	BCD300	1상	바이오시밀러 (루센티스)		2016.12
안지오랩	ALS-L1023	2상	천연물신약	루센티스와 병용 투여	2015.6
삼성바이오에피스	SB11	3상(예정)	바이오시밀러 (루센티스)		

※ 출처: 식약처 온라인의약도서관, ClinicalTrials.gov('17.7월 검색), 언론보도, 보건산업진흥원 보건산업 브리프 Vol.245

혈관신생 억제용 조성물

진입시장

목표고객

고객가치

혈관신생 관련 망막 치료제

- 미숙아 망막병증, 당뇨병성 황반부종, 당뇨병성 망막병증, 중심성 장액 맥락망막병증
- 혈관신생 관련 망막질환(안질환) 치료제 제조기업(B2B)
- 혈관내피세포성장인자와 현저히 우수한 결합력을 나타내어 혈관신생을 억제

● 항암제 및 심질환 치료제 전문의약품

- 항암, 심질환 치료제 전문의약품 제조 기업 (B2B)
- 업
 - 인체독성저감및나노입자기술활용하여 높은혈관신생억제효과

▶ 기술도입 필요성(NABC 접근)

Needs (시장수요)

- ■세계적으로 망막질환 조기 예방 위한 치료제 시장 지속 확대
- ■점안액 및 경구투여 방식의 경우 단독 사용시 혈관신생 억제 효과 입증 못함
- ■기존 VEGF의 경우 높은 해외 의존도로 비용의 과다 발생문제 야기

Approach (해결방법)

- ■유리체강 내 국소 주사 방식의 VEGF를 활용하여 혈관내피세포성장인자와의 높은 결합력 활용
- ■해외 의존 VEGF 기술의 국내 기술 대체

Benefit (기대효과)

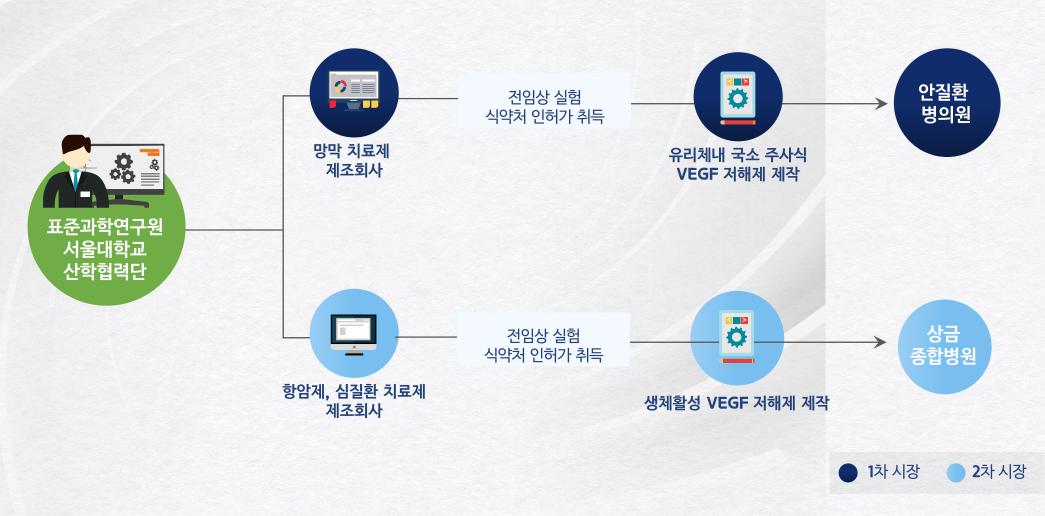
- ■높은 생체 활성을 통한 우수한 **혈관신생 억제 효과 보유**
- ■국내 VEGF 기술확보를 통한 가격 경쟁력 확보 및 시장 창출

Competition (경쟁제품 현황)

- ■아바스틴: 당초항암제 7) 로개발되었으나, 황반변성에도 임상적인 효과가 입증되면서 계속 off-label (허가받은 적응증이외의 용도)로 사용
- ■아일리아: VEGF저해제 중 투여횟수가 가장 적다는 장점
- ■루센티스:바이오시밀러(FYB-201, PF-582)가 개발 중에 있으며, 국내 제약사들도 개발 중인 황반변성 바이오시밀러 중 임상단계에 진입한 파이프라인도 모두 루센티스(라니비주맙) 성분

혈관신생 억제용 조성물

비즈니스 아이디어 제안



혈관신생 억제 분야의 국내 기술 대체를 통한 가격 경쟁력 확보 및 시장 창출

혈관신생 억제용 조성물

기술사업화 예상 수익구조

혈관신생 억제용 조성물


기술사업화 추진체계

• 기술공급기관 사업화 지원 자산 •

- 서울대학교
- ☑ 나노물질 크기분석을 위한 분석기술 개발
- ☑ 표면리간드 분석을 위한 측정방법의 국제표준규격 발간
- ☑ 세포수준 나노독성평가 국제공동연구 수행

기술이전 0.5년

나노입자 기반 VEGF 저해제 노하우 전수 - 연구자 기술지도

- 사업화 주체(기업) 필요요인
- ✓ VEGF저해제 연구개발 및 제품개발 역량
- ☑ VEGF저해제 판매 유통망 보유
- ☑ CEO 기술사업화 추진 의지
- ☑ 제품 양산화 개발 예산 확보
- ☑ 출연연 공동 R&D 수행경험

기술사업화:1년

BM 구체화

양산화 시제품 제작

BM 실행

기업 맞춤형 BM 구체화

- 목표시장 선정
- 목표시장 별 모니터링 서비스 수요 파악
- 수요 맞춤형 BM 수립

BM 기반 제품 개발

- 기업 맞춤형 제품개발 추진
- 시제품 Lab Test 실시 (연구자 자문)
- 시장진입 위한 사용자 Test 실시

BM 적용 제품 양산 / 판매

- VEGF 저해제 제품 출시 / 의약품 개발
- VEGF 저해제 출시 후, 기술 업그레이드 R&D 추진 (정부 R&D사업 연계)

기업지원 프로그램

혈관신생 억제용 조성물

> 주요사업 개요

번호	분야명	분야내용	과제당 KRISS 연구비(억원)	지원기간
1	글로벌 강소기업 육성	성장 잠재력이 우수한 중소·중견기업을 집중 지원하여 세계적 수준의 제품 상용화, 세계적 기업 육성	2	최장3년 (2+1)
2	기술 실용화	KRISS 보유 기초/원천기술의 실용화 연구	0.5	1년
3	기술이전 후속지원	KRISS로부터 기술이전을 받은 중소·중견기업 대상 이전기술 상용화 지원	1	1년
4	명품 홈닥터	성과가 우수한 홈닥터기업(졸업기업 포함)을 지원하여 제품 및 기술 상용화 가속화	0.5	1년
5	중소기업 기술육성	중소·중견기업 현장애로기술 신속 해결 (공고 후 연중 수시접수, 과제비 소진 시 까지 추진)	0.1	6개월 이내
6	교정기관 역량강화	교정기관 기술수준 제고 (공고 후 연중 수시접수, 과제비 소진 시 까지 추진)	0.1	6개월 이내

기업매칭 펀드:

- (중소기업) 총 연구비의 25%이상을 부담. 단, 현금 비중은 총 연구비의 10% 이상
- (중견기업) 총 연구비의 40%이상을 부담. 단, 현금 비중은 총 연구비의 15% 이상

사업 추진일정

- 2014년도 사업: 25개社를 선정하여 지원 중(단, 중소기업 기술육성 과제는 수시 접수)
- 2015년도 사업: 2014년 12월 중에 KRISS 홈페이지를 통해 공모 예정

기술이전 절차 / 문의처

혈관신생 억제용 조성물

