▲ 연구책임자

윤여일

기후변화연구본부 온실가스연구실

한국에너지기술연구원

기술사업화실

042-860-3384

kier-tlo@kier.re.kr

TEL

연소후 CO2 포집 기술, **KIERSOL**

지구온난화 방지를 위한 CCS(CO₂ Capture & Storage) 기술 중 액상포집 기술. 속도 촉진형 탄산칼륨 수용액을 활용한 CO₂ 흡수 기술, 2030년 온실가스 자연증가분 대비 한국 감축목표 37% 중 1000 만톤 활용 예측.

○ 기술의 구성도/개념도

∘ 흡수제의 셔틀 메커니즘을 이용하여 기상의 CO₂를 수용액에 흡수 분리한 후 재생탑에서 스팀 재생하여 연속 운전하는 공정

○ 기술의 주요 내용 및 특징

- ∘ 초미세먼지/CO₂ 배출 산업에 적용 가능한 경제적 CO₂ 흡수제 및 공정 기술
- 연구기간 : 12년 4개월, 투입 연구비 : 194억원 (과기부/산업부)
- 세계 최고 수준(일, 미츠비시중공업사)보다 30% 경제성 우수한 CO2 포집기술
- CO2 포집 공정 기본 설계, 성능 보증 및 개런티 수준까지 기술 확보
- 예상 적용처 : 발전소, 제철소, 시멘트, 석유화학, 바이오가스 고질화, 보일러
- 선행 기술 이전 계약 완료 : 현대기아자동차 (2012.9), 기반 (2015.9)

○ 기술의 적용처

응용분야	적용제품	
발전, 제철, 시멘트, 석유화학	CO ₂ 포집기술 CO ₂ 포집용 흡수제	적용공정 흡수제

○ 기술의 비교우위성/ 기존 기술 대비 차별성

∘ 선도 그룹(MHI(일), Fluor(미)) - CO₂ 포집비용: 35~40 \$/tCO₂ - 공정 대용량 테스트 : 670 MW

기존 기술

· 본기술 (KIERSOL)

본기술

- CO₂ 포집비용 : 27 \$/tCO₂

- 테스트 공정 규모 : 0.5 MW

○ 실험 및 실증 데이터

경쟁 기술과 KIERSOL 성능 비교

Based on water as a solvent Regeneration E (GJ/tCO ₂) Cost (USD/kg) Make up (kg/tCO ₂) Anti-corrosion(wt%)		Alkano	olamine	Benfield (UOP)	KIERSOL (KIER)	
		MEA (Fluor)	KS-1 (MHI)	K ₂ CO ₃ /H ₃ BO ₄	K ₂ CO ₃ /amine	
		2.8~2.9	2.4~2.6	3.8	2.2	
		1.2	16.5	?	2.8	
		1.5	0.35~0.4	2.4	0.2	
		0.5	?	0.5~1.0	0.0	
SO ₂ effe	ct (ppm)	10	1.5	?	After Quenching	
Process	Absorber	50~60	50~60	100°C (9 atm)	40~50	
(°C, 1atm)	Stripper	120	120	103	103	

○ 기술의 성숙도

현황

							•					
	1	2	3	4	5		6	7	8		9	
- 1	기초역	연구	I	실험	1	시작품	1	실	용화	1	사업화	1

[TRL 6: 파일롯 규모 시작품 제작 및 성능 평가] ~ [TRL 7: 신뢰성평가 및 수요기업 평가]

지식재산권

순번	발명의 명칭	출원번호	출원일자	등록번호	등록일자
1	입체저항 사이클릭 아민에 의해 효율이 향상된 알칼리 탄산염계 CO ₂ 흡수제 및 이를 이용한 이산화탄소 제거 방법	10-2009- 0131571	2009,12,28	10-1157141	2012.06.11

핵심 소재 특허 등록 국가 : 한국, 중국, 호주, 미국, 캐나다, 인도

국내 출원 28, 국내 등록 45, 해외 출원 41, 해외 등록 13

Principal researcher

Greenhouse Gas Laboratory of the Climate Change Research Division

Yoon Yeo-II

Inquiries

Research

E-mail

Business Development

Team of the Korea

Institute of Energy

042-860-3384

kier-tlo@kier.re.kr

Post-combustion CO₂ capture technology, KIERSOL

CO₂ capturing technology is one of CCS (CO₂ Capture & Storage) technologies for preventing global warming

This technology is one of the wetabsorption methods and a promoted potassium carbonate solution is used as an absorbent.

The technology predicts to abolish 10 million tones of greenhouse emissions, while Korea's goal is to reduce emissions by 37% by 2030, to compensate for the spontaneous increase.

Structural Diagram/Conceptual Diagram

 \circ In the continuously operated process, the gas-phase CO_2 is absorbed by the aqueous solution for separation by using the shuttle mechanism of the absorbent, and then regenerated by steam in the stripper.

Description and Characteristics of Technology

- \circ Economically feasible CO_2 absorbent and process technology applicable industries emitting micro-dust and CO_2
- Research period: 12 years and 4 months; Input research fund: 25.9 billion KRW (Ministry of Science & Technology/Ministry of Trade, Industry and Energy)
- -The CO_2 capturing technology has economic feasibility 30% higher than the world's top technology (Mitsubishi Heavy Industries, Ltd., Japan)
- -The technology has been developed to secure the basic design of the ${\rm CO_2}$ capture process and guarantee the performance.
- Potential applications: power plants, ironworks, cement industry, petrochemical industry, biogas purification, and boilers
- -Technology transfer contracts were concluded with Hyundai and Kia Motor Group for the preliminary technology (Sep,2012), the application for biogas upgrading (Sep, 2015) and CO2absorbent for petrochemical industry (Nov. 2018).

Scope of Application

Application Fields	Products	
Power generation, iron industry, cement industry and petrochemical industry	CO ₂ capture technology, CO ₂ capturing absorbent	KIERSOL process absorbent

 Comparative advantages of technology / Differentiation from existing technologies

Experimental and empirical data

Leading groups (MHI (Japan) and Fluor (US)) CO₂ capturing cost: 35 to 40 \$/tCO₂ High-capacity process test: 670 MW Present Technology (KIERSOL) CO₂ capturing cost: 27 \$/tCO₂ Test factory scale: 0.5 MW

Present Technology

Conventional Technology

Performance comparison of KIERSOL with competing technologies

Based on water as a solvent		Alkano	olamine	Benfield (UOP)	KIERSOL (KIER)	
Dased on Wale	a as a solveni	MEA (Fluor)	KS-1 (MHI)	K ₂ CO ₃ /H ₃ BO ₄	K ₂ CO ₃ /amine	
Regeneration E		2.8~2.9	2.4~2.6	3.8	2.2	
		1.2	16.5	?	2.8	
		1.5	0.35~0.4	2.4	0.2	
		0.5	?	0.5~1.0	0.0	
		10	1.5	?	After Quenching	
		50~60	50~60	100°C (9 atm)	40~50	
(°C, 1atm)	Stripper	120	120	103	103	

Maturity level of technology

Current status of intellectual property rights

		▼										
	1	2		3	4		5	6		7	8	9
1	Basic Re	esearch	1	Exper	iment	1	Prot	otype	1	Turning int	o practice	I Commercialization I

[TRL 6: pilot-scale prototype preparation and performance evaluation]

~ [TRL 7: Reliability evaluation and evaluation by demanding company]

No.	No. Title of Invention		Application Date	Registration Number	Registration Date
1	CO2 absorbent based on alkali carbonate solution promoted by hindered cyclic amines and CO ₂ removing method using the same	10-2009- 0131571	2009.12.28	10-1157141	2012.06.11

 $Countries\ where\ the\ core\ material\ has\ been\ patented:\ Korea,\ China,\ Australia,\ US,\ Canada,\ and\ India$

Patent application in Korea 28, Patent registration in Korea 45, International patent application 41, International patent registration 13