구조용 금속소재의 설계와 미세조직 예측 기술

Materials Design and Microstructure Prediction of Structural Alloys

TRL5

₩ 기술내용

- 구조용 금속소재를 구성하는 원소특성 및 미세조직 형성 원리 기구에 기반하여. 제조공정에서의 미세조직 형성과 사용환경에서의 미세조직 변화를 모사하여, 신합금 설계에 적용하고 성능을 예측하는 기술
- 제조공정-미세조직-특성 관계의 정량적 멀티스케일 모델링에 의하여 소재와 부품특성을 가상공간에서 예측하여 혁신적인 소재·공정 개발을 위한 지침을 제시하는 기술

기술의 특징

- 전산해석 기반 소재설계
- 기술원소특성에 기반한 제일원리계산, 분자동역학 및 열역학 계산을 이용하여 신소재 개발을 위한 물성예측 및 성분계 도출
- 전산해석 기반 공정설계 기술
- 제조공정에 따른 미세조직 변화 및 구성상의 금속조직학적 특성을 반영한 제조 공정 해석 및 공정 최적화 기술
- 전산해석-특성평가 연계기술
- 소재·공정 모델링에 요구되는 각종 소재물성 및 미세조직 정보를 생성하여 전 산해석 및 시뮬레이션의 신뢰성을 향상시키는 기술

기술개발상태

- 제일원리계산 기반 구조용 금속소재 설계 기술 (2020)
- 열역학/속도론 계산 기반 미세조직 예측 기술 (2015)
- Phase-field 모델링 기반 미세조직 예측 기술 (2020)
- 미세조직 특성을 반영한 공정해석 및 설계 기술 (2020)
- 전산해석-나노/메조 스케일 특성평가 연계기술 (2020)

() 우수성

구분	현재기술	기술의 우수성
전산해석 기반	평형/비평형 열역학	시공간의 변화를 고려한
소재설계 기술	계산 기반 미세조직 예측	미세조직 예측
전산해석 기반	평균적 물성을 고려한	미세조직 구성상의 개별
공정설계 기술	매크로 공정해석	특성을 고려한 공정해석
특성평가	매크로 공정해석을 위한	나노/메조스케일 특성과
연계기술	거시적 기계적 성질 평가	시뮬레이션 기술 연계

이전 가능 기술

- 금속소재종합솔루션센터사업 및 기계소재부품 산업기술 R&D 전문인력 양성사업과 연계한 소프트웨어활용 교육
- 열역학/속도론 기반 미세조직 예측 기술 노하우
- 특수합금 VAR(Vacuum Arc Remelting) 공정해석
- 소프트웨어: Thermo-Calc, DICTRA, MeltFlow 등

⚠ 사업성 ·

- 진공아크재용해(VAR) 공정을 이용한 특수합금 잉곳 제조
- 열전달-전자기장-유동해석에 의한 VAR 공정조건 도출
- 전산해석 기반 구조용 금속소재의 미세조직 예측과 제어
- 주조재 미소편석 예측 및 균질화, 탄질화 공정 시뮬레이션, 액상확산 접합 미세조직 예측, 경량합금 석출거동 예측
- 타이타늄, 니켈합금 등 특수합금 열간가공 공정 최적화
- 나노·메조스케일 특성평가에 의한 물성 획득

기대효과

• 소재·공정 개발 비용절감 및 기간단축

Design of Structural Alloys and Prediction of their Microstructure

Technology Overview

- The technology focuses on the innovative materials design and performance analysis by simulating the microstructure evolution of structural alloys under fabrication and in-service conditions based on the in depth studies on the alloying elements and the mechanisms.
- · Materials and component characteristics are associated to the process-structure-property relationship in a virtual space to motivate leading-edge materials and processes development.

Features

- · Material design based on computational analysis
- Alloy design and property simulation using first-principle calculation, molecular dynamics and thermodynamic calculation
- · Process design based on computational analysis
- Process analysis and optimization technology reflecting microstructure evolution and structural properties in metallurgical concept
- Connecting computational analysis and property evaluation
- To improve the reliability of computational analysis and simulation by collecting various material properties and microstructure information

Technology availability

- First-principle calculation based structural materials design (2020)
- Thermodynamic/Kinetic calculation based microstructure simulation (2015)
- Phase-field modeling based microstructure simulation (2020)
- Process Analysis and Design Technology Reflecting Microstructural Characteristics (2020)
- · Connecting technology of computational analysis and nano/meso-scale property assessment (2020)

Highlights and Strengths

Category	Current technology	KIMS's technology	
Material design based on computational analysis	Prediction of microstructure based on equilibrium / non-equilibrium thermodynamic calculation	Prediction of microstructure in consideration of spatio-temporal changes	
Process design based on computational analysis	Macro process analysis considering mean-properties	Process analysis considering individual properties of microstructure	
Connecting computational analysis and property evaluation	Evaluation of macro mechanical characteristics for macro process analysis	Multiscale simulation of nano/ meso-scale properties	

Transferable technology

- Software training affiliated with Metal Materials Center and Machinary/ Materials/Component Industrial R&D Professional Training Project
- Technology to predict microstructure based on thermodynamics and kinetics
- Process analysis for specialty alloy vacuum arc remelting (VAR)
- Software: Thermo-Calc, DICTRA, MeltFlow, etc.

Business Cases

- · Fabrication of specialty alloy ingot using VAR process
- Elicitation of optimal process conditions based on thermal transport, electromagnetic field, and flow analysis
- · Prediction and control of structural metal's microstructure based on computational analysis
 - Prediction of microsegregation of casting, simulation of homogenizing and carbonization, prediction of liquid diffusion bonding, prediction of precipitation behavior of lightweight alloys
- · Optimization of TMPs of specialty alloys such as Ti and Ni alloy
- Gathering materials properties by nano/meso-scale characteristics assessment

· Saving of cost and time for development of material and process

