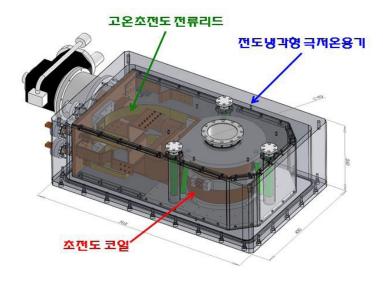
2-3/ 자이로트론 구동용 초전도자석


초전도연구센터 **배주**하

본 기술은 자이로트론 구동을 위한 초전도자석(Superconducting magnet, SM)를 구현함에 있어, 자이로트론의 고균등 고자장을 안정적으로 공급 할 수 있는 초전도자석을 개발하는 것임. 이를 위해, 실제 사용환경을 고려하여 다중물성해석을 기반으로 초전도코일의 설계 최적화 기술을 확보하였고, 사용자 편의성, 소형화, 경량화 및 가격절감을 목적으로 전도냉각형 극저온냉각장 치의 진공단열설계 기술을 확보하여 자이로트론 구동용 초전도자석을 상용화 할 수 있는 기술임.

기술개념 및 기술규격

■ 기술의 개념

· Gyrotron 구동을 위해 요구되는 초전도자석은 고균등 고자장을 발생시키기 위한 초전도코일, 통전시 저항열 전달을 최소화하기 위한 고 온초전도 전류리드 및 초전도 코일을 운전온도까지 냉각하고, 유지시키는 전도냉각형 극저온용기로 구성

〈자이로트론 구동을 위한 초전도자석 구성도〉

1. 기술 개요

■ 기술개발의 필요성

- 자이로트론의 안정적인 전자빔 출력을 얻기 위해서는 주어진 공간 내에서 0.1% 이하의 자장불균일도로 중심자장 4T 정도를 발생시킬 수 있는 초전 도자석이 필요함.
- 초전도자석은 4K의 극저온에서 동작하기 때문에 냉각에 의한 구조물의 수 축으로 인해 초전도 코일의 형상 변형 및 위치 변경이 필연적으로 발생함. 따라서, 실제 사용환경을 고려하여 초전도 코일을 설계해야 함.
- 통상적으로 초전도자석은 액체헬륨을 사용하므로 부피가 크고, 무겁고, 가격이 비싸고, 사용이 번거롭고, 유지비용이 많이 들며, 폭발 위험이 있다는 문제가 있음. 따라서, 사용자 편의성, 소형화, 경량화 및 가격절감을 위해 전도냉각형 극저온냉각장치의 개발이 필요함.

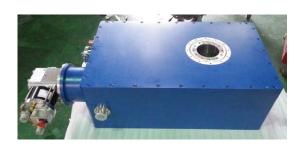
■ 기술개념 및 기술규격

■ 기술 개념

· 본 기술은 전기연구원 고유의 다중물성해석 기반 초전도코일 설계 최적화 기술과 진공단열 설계 최적화 기술을 이용하여 자이로트론 구동을 위한 전 도냉각형 초전도자석을 개발함으로써 시스템의 효율, 신뢰성을 향상 시킴.

2. 기술 내용

■ 기술의 특징


■ 기술의 특장점 및 상세 규격

· 운전 온도: 4.0K @ 전도냉각

· 상온보아직경: 90mm

· 최대 중심자장: 4.0T

· 자장불균일도: 〈 0.1% @ z=±1cm

점점기술과 차별성

- 국내외 유사 · 경쟁기술 현황
- · 자이로트론용 초전도자석 기술

국외	기술명	초전도코일 기술		
	기술내용	BSCCO 초전도선을 적용하여 운전온도 35K에서 89mm의 상온 보아 내에서 3.35T의 고자장을 발생시키는 초전도코일의 소형화 기술		
	기술명	극저온냉각 기술		
	기술내용	극저온냉동기를 이용하여 전도냉각으로 초전도코일을 운전온도까지 냉각 및 유지하는 고효율 진공단열 기술		
	기술명	고온초전도 전류리드 기술		
	기술내용	운전시 전류리드를 통해 들어오는 저항열을 최소화하기 위해 원통벌크형 BSCCO 초전도 전류리드 기술		

■ 경쟁 기술 대비 우수성

경쟁기술	본 기술의 우수성
자이로트론용 초전도자석	· 고가의 BSCCO, YBCO 초전도선 대신에 저렴한 NbTi 초전도선을 적용하여 초전도 코일의 제조원가를 $\frac{1}{2}$ 이하로 낮춤.
기술	· 깨지기 쉬운 원통벌크형 BSCCO 초전도 전류리드 대신에 YBCO tape로 구성된 초전도 전류리드 적용하여 유연성을 증가시킴.

3. 기술의 시장성

□ 기술 적용 가능 분야

- 기술이 적용되는 사업분야 및 제품(시스템)
- · 본 기술은 의료기기(MRI), 발전소(발전기, 변압기), 비살상무기(스턴건) 등에 적용 가능함

〈의료기기-MRI〉

〈발전소의 발전기/변압기〉

(비살상무기-스턴건)

■ 시장 현황 및 규모

- 관련기술 시장현황 및 특성
- · 세계 MRI 시장규모는 2014년 50.9억 달러에서 연평균 5.0%로 성장하여 2020년에는 68억 달러, 2022년에는 75억 달러에 이를 것으로 예상됨
- · MRI는 기술적 발전과 용도 확대, 세계 인구 급증과 인도, 중국 등 개발도상 국의 성장이 향후 MRI 시장 확대를 이끌 것으로 전망됨
- ·특히, 인도와 중국은 공립병원에 비해 민간병원의 수요가 높을 것으로 기 대되며, 심장,신경 질환과 암 발병이 증가하면서, 검사 수요도 더욱 증가할 것으로 예측됨
- 국내외 시장 규모

〈세계 MRI 시장규모 및 전망〉

자료: Magnetic Resonance Imaging (MRI) Systems Market 2015 - Global Forecast to 2020 *2021년부터 연평균 성장률 5.77%로 추정함

4. 주요 연구 성과

📫 특허 출원 및 등록 현황

구분	특허명	국가	번호	년도
등록	자이로트론용 초전도자석	한국	10- 1501004	2015
등록	전도 냉각을 위한 초전도 코일 장치	한국	10- 15000999	2015

기술의 완성도

- TRL 4 기술완성도 단계: 실험용 시제품 개발 단계
- 개발 기술 범위
- · 전도냉각형 고자장 초전도자석 제작 및 평가
- · 자이로트론 시스템 연계 성능 향상 시험
- 기술개발 완료 시기
- · 2016년 12월: 자이로트론 구동 초전도자석 보완 및 안정화

5. 기대 효과

□ 기술 도입 효과

- 경제적인 효과
- · 공공안전, 법 집행, 해적퇴치, 거점방어 등 다양한 수요에 대응할 수 있는 비살상 무기 기술이 요구됨. 경제적 가치로 환산할 수 없는 생명에 대한 위험을 회피하면서 주요시설 방범에 활용될 수 있음. 민간이 보유할 수 있 는 적극적인 자위수단이 될 것으로 기대.
- · Homeland Security Research 는 NLW 시장이 2020년까지 3배의 성장을 달성할 것으로 예측하고 2016~2020년 CAGR(복합연간성장률) 17%로 가 속화 되며, 2018년에는 시장규모가 11억4천6백만 달러에 도달 할 것으로 전망

■ 기술 · 산업적 파급 효과

- 기술적 파급 효과
- · 핵융합용 플라즈마 가열이나 바이오 응용과 같은 첨단과학 기술 및 세라믹 소결과 같은 산업기술로도 쉽게 전이가 가능함
- · 공항 활주로 조수 퇴치 시스템, 주요 시설물 능동 방범 시스템 등에 적용
- · 식품 표면에서 발생하는 바이오 필름을 효율적으로 제거하여 식품안전 사 고 예방에 기여할 수 있음