요약 47

유기전자소자의 기능 향상을 위한 기술명 : 수용성고분자 - 그라핀옥사이드 복합체의 제조기술

기술분야 (6T)		산업기술 분류코드							
, LE E (01)		대분류	중분류	1 = 4	소분류		코드번호		
Ⅱ 분야		화학	고분자 재료	ĵ	복합재료제조기술		400203		
기 술 개 요	기술 요약	합한 후 방사선을	명은 용매를 이용하여 수용성고분자를 용해시키고 이를 그라핀옥사이드와 혼후 방사선을 조사함으로써, 전기전도도가 향상된 수용성고분자-그라핀옥사이드를 제조하는 방법 및 이를 적용한 유기전자소자에 관한 기술임						
	기술의 효과	 방사선 조사에 의해 공액 결합이 증가하여 수용성고분자-그라핀옥사이드 복합체의 전기전도도가 향상됨 공정 시간이 단축되고, 공정간 수분 침투가 감소됨 공정이 상온에서 진행되므로 수치 안정성이 확보됨 화학물질 등의 잔사가 존재하지 않고, 수용성고분자와의 상호작용으로 용액 분산성이 향상됨 방사선 흡수선량의 조절만으로 재현성 있는 고품질의 규격 제품을 낮은 손실률로 제조할 수 있어, 산업적으로 가능성이 높음 							
	기술의 응용분야	유기전자소자			전자부품 소재				
		전계효과 트랜지스	가기 발광다이오드, 유기 :터, 유기 메모리장치 -	ē		고분자 소기	재	전기차용	
	기술 키워드		수용성고분자, 그라핀옥사이드, 유기전자소자, 방사선, 전기전도도 water soluble polymer, graphene oxide, organic electronic element, radiation, conductivity						
	기술 완성도 (TRL)	기초 연구 단계	실험 단계		남품 단계	제품화		사업화	
		기본원리 기본개념 파악 정립	기능 및 연구실환경 개념 검증 테스트	유사완/ 테스트	경 파일럿현장 성 - 테스트		실제 완경 종테스트	상용운영	
			0	·	,				
환 경 분 석	시장 동향	시장규모 2	세계 차세대전자소자 시장은 2016년 33억 달러에서 2020년에는 277억 달러에 이를 것으로 전망되며, 국내의 경우 2016년 344억원에서 2020년에는 2918억원의 시장규모를 형성할 것으로 예측됨세계 차세대전자소자 시장은 연평균 65.8%로 성장하고 있으며,						
		1878 E (CAOIO	국내는 66.9%로 고속 성장하는 추세임						
		가격민감도	낮음						
		제품수명주기	유기전자소자의 경우 적용 시장의 특성상 제품 수명이 짧음				음		
		유통구조	방사선 조사를 위한 전자선 가속기를 구비하여 본 기술을 적용한 제품을 직접생산방식으로 제조할 수 있으며, 방사선 조사 서비스 가 가능한 업체와의 OEM 방식의 제휴를 통해 제조·유통 가능함						
	업체 동향	유기전자소자 분야는 전 분야에 걸쳐 사용됨에 따라 지금까지 꾸준하게 기술 개발이 진행 중에 있으며, 기술 우위를 선점하기 위한 업체 간의 치열한 경쟁이 예상됨							
사 업 화	기술사업화 방안	종 류		형 태			₹	면 장	
		기술거래	기반기술을 토대로 사업화 가능기업에 기술실시권 부여			****			
		Joint Venture	연구원과 기업의 공동투자를 통한 시장 개척 진입			**			
전		Venture	연구원 주도의 창업보육 및 기업성장 후 기술이전			*	*		
략		R&BD	기술이전을 전제로 한 공동 연구개발						