

기술개요 및 주요내용

기술개요

- 스텔스 기술은 전자기파를 흡수/상쇄하여 반사파를 최소화 함으로써 적의 탐지를 최소화하고, 무기체계의 생존성과 임무수행능력 향상을 위한 핵심 군사기술로, 최근 대두되는 EMI/EMC 문제를 해결할 수 있는 확장성이 높은 응용 기술임
- 또한, 대형 풍력 발전용 블레이드에 의한 군수/민수용 레이더와의 신호간섭 문제를 해결할 수 있는 주요 기술임

기술 주요내용

- 전자파흡수 성능의 스텔스 풍력 블레이드 설계/제조 기술
 - 전파흡수구조 설계/제조/평가 기반 구축
 - 스텔스 풍력 블레이드 설계/제조 기술 및 성능 검증
 - 날개 앞전 전자파 흡수구조 설계/제조 기술 및 성능 검증

<스텔스 풍력 블레이드> <스텔스 날개 앞전 구조>

경쟁기술 대비 우수성

	구분	현재기술	기술의 우수성
	전자파 흡수체 설계/제조 기술	- 국내 전자파 흡수체 실 크기 대형 구조물 적용 사례 없음	- 국내 최초/최대의 대형 전자파 흡수구조 기술 개 발 및 획득
,	스텔스	- 국내 전자파흡수 스텔	- 블레이드 무게 총증가율
	풍력 블레이드	스 풍력 블레이드 개발	< 1.3 wt%, 모든 방향 평균
	성능	사례 없음	90 % (10 dB) 이상 흡수
	전자파 흡수	- 국내 실 크기 전자파	- 고온/저온 온도변화에 따
	날개 앞전 구조	흡수 날개 앞전 구조 개	른 성능 저감이 거의 없이
	성능	발 사례 없음	99 % (20 dB) 이상 흡수

◆ 시장성 및 사업성

- 전자파 차폐/흡수재료의 세계시장은 2015년 6조 2천억원 규모에서 2019년 7조 3천억원 규모로 성장할 것으로 전망
- 연평균 성장률은 2014~2019년도 사이에 4.4%에 이르며, 공공 전기/전자 시설의 전자파 간섭 방지 대책이 국가적 차원에서 계획되고 있음을 고려할 때, 전자파 차폐/흡수재료 시장의 성장률은 이보다 더 증가할 것으로 예상
- 기대효과
 - 육상/해상용 차세대 스텔스 무기체계 산업 발전에 기여
 - EMI/EMC 관련 전자기기 및 토목/건축 내·외장재에 활용
 - 레이더 간섭 관련 육상/해상용 풍력 블레이드에 활용
- 이전 가능 기술
 - 고유전성 중간재 제조 기술
 - 전자파 흡수체 설계/제작 기술
 - Application 사례: 스텔스 풍력 블레이드 / 날개 앞전 전자파 흡수구조

〈스텔스 전투기, 전함〉

〈대규모 해상 풍력 발전 단지〉

기술개발단계 및 보유기술현황

Technology Readiness Level : 유사환경에서의 Working model 검증(5단계) 보유기술현황

- 1. [논문] 장홍규, Semi-cylindrical Radar Absorbing Structures using Fiber-reinforced Composites and Conducting Polymers in the X-band, Advanced Composite Materials, 2011
- 2. [논문] 장홍규, Electromagnetic Wave Absorbing Technique using Periodic Patterns for Low RCS Patch Array Antenna, International Journal of Modern Physics B, 2013
- 3. [논문] 장홍규, Manufacture and Characterization of Stealth Wind Turbine Blade with Periodic Pattern Surface for Reducing Radar Interference, Composites Part B: Engineering, 2014

기술 문의: 장홍규 선임연구원 hongkyu@kims.re.kr