# **35**

### ▲ 연구책임자

에너지효율·소재연구본부 분리변환소재연구실 이진석

한국에너지기술연구원

기술사업화실

042-860-3384

kier-tlo@kier.re.kr

**TEL** 

➤ E-mail

# 태양광 모듈

## 재활용 기술

결정질 실리콘 태양광 모듈을 물리적/열적인 방법으로 분해하여 프레임, 정션박스, 저철분 유리, 태양전지, 구리리본을 각각 회수한 후, 다양한 방법을 이용하여 각각의 회수물로부터 고순도 실리콘, 은, 구리 등의 유용소재를 회수하여 자원화할 수 있는 통합 재활용 기술.

### ○ 기술의 구성도/개념도



### ○ 기술의 주요 내용 및 특징

- 물리적/열적/화학적 혼합공정을 이용한 태양광 모듈 Total Recycling 기술
- 비파쇄 공정 기반의 고품질 부품/소재 회수
- 모듈 표면 전처리 공정을 통한 모듈로부터 비파손 태양전지 회수 가능
- 회수 웨이퍼 이용 고효율 태양전지 재제조 가능
- 99.9% 이상의 고순도 금속소재 회수 및 자원화 가능

### ○ 기술의 적용처

| 응용분야                  | 적용제품                            |         |
|-----------------------|---------------------------------|---------|
| 태양광 모듈<br>재사용/리페어/재활용 | 태양광 폐/불량모듈<br>폐/불량태양전지<br>금속스크랩 | 1923 CS |

○ 기술의 비교우위성/ 기존 기술 대비 차별성

○ 실험 및 실증 데이터



본기술

• 연속식 통합공정 (Total Recycling)

• 물리적/열적 혼합공정을 이용하여

• 모듈 표면전처리를 통해서 비파손

• 파분쇄 공정이 불필요하여 고순도 소재

봉지재 제거효율 높음

태양전지 회수 가능

회수 가능

- >>> 비파쇄 공정에 의한 고순도 판유리 회수
- >>> 모듈 표면처리를 통한 태양광 모듈로부터 비파손 태양전지 회수

기존 기술

• 물리적 파분쇄 기반으로 봉지재

• 전처리 기술 부재로 태양전지 회수

• 파분쇄 기반이라 회수한 소재의 순도가

• 배치식 개별공정

제거효율 낮음

불가능

- » 친환경 화학적 공정 기반의 실리콘 웨이퍼 회수
- » 회수 웨이퍼 기반 태양전지 재제조 (상용 웨이퍼와 전지효율 유사)



### [TRL 5: 확정된 소재/부품/시스템시작품 제작 및 성능 평가]

- · 태양광 모듈 'Total Recycling' 공정 및 장치기술 평가
- 회수소재 기반 고순도 태양전지 제작 및 평가

| 순번 | 발명의 명칭                                                       | 출원번호                | 출원일자       | 등록번호              | 등록일자       |  |
|----|--------------------------------------------------------------|---------------------|------------|-------------------|------------|--|
| 1  | (국내)<br>태양전지모듈의 해체 방법 외 10건                                  | 10-2013-<br>0117487 | 2013.10.01 | 제 10-<br>1486803호 | 2015.01.21 |  |
| 2  | (해외)<br>METHOD FOR DISASSEMBLING PHOTOVOLTAIC<br>MODULE 외 4건 | 14,503,412          | 2014,10,01 | 9,455,367         | 2016.09.27 |  |

구분

전체 공정

모듈 분해

태양전지

회수

소재 회수

○ 기술의

○ 지식재산권 현황

성숙도

### **Principal researcher**

Separation and **Conversion Materials** Laboratory of the Energy Efficiency Technologies and Materials Science Division

Lee Jin-Seok

Solar module recycling technology

The present technology is an integrated recycling technology to disassemble crystalline silicone solar modules by a physical or thermal method to recollect the frame, junction box, low-iron glass, solar cells, and copper ribbons, and to recover, by various methods, useful materials useful materials from the disassembled components, such as high-purity silicon, silver, and copper, to recycle the resources.

### Structural Diagram/Conceptual Diagram



### Description and Characteristics of Technology

- A solar module total recycling technology using a mixed process of physical, thermal, and chemical
- Non-crushing process-based recovery of high-quality components and materials
- Non-crushed solar cell recovery from solar module through module surface pretreatment process
- Re-manufacturing of high-efficiency solar cells using recovered wafers
- Recovery and recycling of high-purity (over 99.9%) metallic materials

### Scope of Application

| Application Fields                          | Products                                                                          |                                            |
|---------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------|
| Solar module reuse, repair<br>and recycling | Waste and fault solar modules,<br>waste and fault solar cells,<br>and metal scrap | (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2 |

Comparative advantages of technology / Differentiation from existing technologies

Experimental and empirical data

Maturity level

Current status

of intellectual property rights

of technology

| Non-crushed solar cell                                                 | Wafer recovered | Re-manufactured |  |  |  |  |
|------------------------------------------------------------------------|-----------------|-----------------|--|--|--|--|
| recovered from solar module                                            | from solar cell | solar cells     |  |  |  |  |
| M 6                                                                    |                 |                 |  |  |  |  |
| Manufacturing of high-efficiency solar cells based on recovered wafers |                 |                 |  |  |  |  |

»» Recovery of high-purity sheet glass by non-crushing process

Conventional Technology

• Impossible to recover solar cells due to the

• Low purity of recovered materials due to

• Individually arranged processes

· Low encapsulant material removal efficiency due to physical crushing

lack of a pretreatment technology

crushing process

**Present Technology** 

efficiency due to mixed process of physical

Possible to recover non-crushed solar cells

through module surface pretreatment

• Possible to recover materials at a high

purity due to the absence of crushing

• Continuous integrated process (total

• High encapsulant material removal

and thermal methods

recycling)

process

Item

Overall

process

Module

disassembly

Recovery

of solar cell

Materials

recovery

- » Recovery of non-crushed solar cells from solar modules through module surface treatment
- »» Recovery of silicon wafers based on environment-friendly chemical process
- » Re-manufacturing of solar cells based on recovered wafers (battery efficiency similar to commercially available wafers)



[TRL 5: Preparation and performance evaluation with determined materials, parts and system prototype]

| No. | Title of Invention                                                                        | Application<br>Number | Application<br>Date | Registration<br>Number | Registration<br>Date |
|-----|-------------------------------------------------------------------------------------------|-----------------------|---------------------|------------------------|----------------------|
| 1   | (Domestic patent)<br>10 patents including "Method for disassembling solar<br>cell module" | 10-2013-<br>0117487   | 2013.10.01          | 10- 1486803            | 2015.01.21           |
| 2   | (International patent) 4 patents including "METHOD FOR DISASSEMBLING PHOTOVOLTAIC MODULE" | 14,503,412            | 2014.10.01          | 9,455,367              | 2016.09.27           |

### Inquiries

**Business Development** Team of the Korea Institute of Energy Research

042-860-3384

E-mail kier-tlo@kier.re.kr