

요 연구책임자

문의

📞 TEL

🔀 E-mail

한국에너지기술연구원 기술사업화실

042-860-3384

kier-tlo@kier.re.kr

에너지효율·소재연구본부 분리변환소재연구실 박상현

복사열(Radiation heating)을 이용한 고온 열전소재 접촉저항 측정 기술

고온에서 사용하는 열전소재의 접촉저항 측정을 위해 복사열을 이용하여 상온에서부터 열전소재가 동작하는 온도까지 고른 온도분포를 유지하며 접촉저항을 측정하는 기술.

○ 기술의 구성도/개념도

○ 기술의 주요 내용 및 특징

- Extrapolation 방식의 측정기법을 도입한 고온 접촉저항 분석 기술
- 할로겐 히터 복사열 가열방식 및 Radiation shield를 통한 열안정 구조
- 최대 측정온도 600°C, 최소 측정간격 5um로 정교한 접촉저항 측정 기술
- Probing과 Scanning모드 측정기법 도입으로 다양한 샘플 측정 가능
- 샘플 압력 Feedback 시스템으로 온도변화에 즉각 대응 가능

○ 기술의 적용처

응용분야	적용제품	
열전 발전 및 냉각	자동차 배기관용 폐열회수 장치, 소각로 등 부착형 발전시스템, 관형 발전시스템, 히트 파이프 부착용 발전장치 등	and the

● 기술의		기존 기술			본 기술	
비교우위성/ 기존 기술 대비 차별성	•	상온에서의 Extrapolation 주 → 열전소재 동작온도에서의 불가 Probing 모드로 일정간격 ⊼ → 측정이 느리고 오차가 크기	접촉저항 측정 접촉저항 파악 항 측정 게 발생할 수 있음	 고온 Extrap > 열전소지 정확하거 Probing & 1 → 측정이 비 기술, 적・ 고온에서의 → Radiatic 이루어 N 	olation 접촉저항 배동작온도에서의 이 측정 가능 Scanning 모드 저 바르고 다양한 샘플 은 오차로 측정가는 Noise 최소화 on shield 구조 개듭 Noise 최소화	측정 접촉저항을 하 측정 에 대응 가능한 5 발로 온도 평형을
신허 미						
실증데이터	Resistance (mohm)	2.6 Ni TE mat 2.4 2.2 2.0 1.8 3 x 10 ⁻⁵ Ω· 1.6 2000 3000 Distance (t	erial Ni ccm ² 4000 5000 um)	Ni 0.7 0.6 0.4 0.3 0.2 0.0 0.1 0.0 0.1 0.0	TE mate 3.7 x 10 ⁻⁵ Ω Roon 9.7 x 10 ⁻⁶ Ω-1 1000 2000 3 Distance (un	erial Ni 300°C
		기존 상온 측정 데(기터	고온	· 접촉저항 장비 측정	성결과
		접촉저항 기존 장비 3 고온 장비 9.	상원 10 3 x 10 ⁻⁵ 7 x 10 ⁻⁶ 1.1 x	0°C 200° < 10⁻⁵ 3.1 × 3	• C 300 • C 10 ⁻⁵ 3.7 × 10) -5
	≫ ∓ ŕ	L은 접촉저항 측정데이터 >준의 낮은 접촉저항 측정:	확보로 실제 열전 가능	소재 동작온도어	서의 접촉저항	분석 10-6 Ωcm
기술의 성숙도	[TRI Lab · 고 · 양	2 3 기초연구 1 - 4: 실험실 규모의 소재 scale 시작품 개발 단계 효율화 기술개발 진행 산모사 공정기술 확보 추진	<mark>실험</mark> / 부품/시스템 핵	5 6 _{시작품} 심성능 평가]	7 : 1 실용화	8 9 I 사업화
● 지식재산권	순번	발명의 명칭	출원번호	출원일자	등록번호	등록일자
현황	1	열전 소자의 접촉 저항 측정 모듈 및 이를 포함하는 측정 장치	10-2015-0040811	2015.03.24	10-1657986	2016.09.21

80 81

Principal researcher

Separation and **Conversion Materials** Laboratory of the Energy Efficiency Technologies and Materials Science Division

Park Sang-Hyun

High-temperature thermoelectric material contact resistance measurement technology using radiation heating

The present technology is for measuring the contact resistance of a hightemperature thermoelectric material by maintaining thorough radiation heating a uniform temperature distribution from room temperature to the operation temperature of a thermoelectric material.

Structural Diagram/Conceptual Diagram

Photo of high-temperature contact resistance measurement equipment and probing & scanning measurement technology

Description and Characteristics of Technology

- A high-temperature contact resistance analysis technology with extrapolation-based measurement technique
- A thermally stable structure based on halogen heater radiation heating and radiation shield
- A precise contact resistance measurement technology available at the highest measurement temperature of 600°C and the minimum measurement interval of 5 um

Products

etc.

- Probing and scanning measurement modes allowing for measurement of various samples
- A sample pressure feedback system allowing for immediate reaction to temperature change

Scope of Application

Application Fields	
Thermoelectric power generation and cooling	Was exhau sys po atta

O Comparative advantages of technology / Differentiation from existing technologies

Conventional Technolog

 In the conventional technology the ex contact resistance is measured at roon temperature.

- → Impossible to measure the contact resis operating temperature of a thermoeled
- Constant interval resistance measurem probing mode

 \rightarrow Slow measurement and large errors

• Experimental and empirical data

Maturity level

• Current status

of intellectual

property rights

of technology

Contact resistance equipment	Room temperature	100℃	200℃	300℃
Conventional	30 μΩ·cm ²	-	-	-
For high temperature	9.7 $\mu\Omega$ ·cm ²	11 μΩ·cm²	31 μΩ·cm²	37 μΩ·cm²

precisely at the level of 10-6 Ω cm²

[TRL 4: Lab-scale core performance evaluation of materials, parts, and system] Lab scale prototype development level

No.	Title of Invention	Application Number	Application Date	Registration Number	Registration Date
1	Contact resistance measuring module of thermal device and measuring apparatus having the same	10-2015-0040811	2015.03.24	10-1657986	2016.09.21

Institute of Energy

📞 Tel 042-860-3384

Inquiries

Research

Business Development

Team of the Korea

0

у	Present Technology
trapolation n istance at the ectric material	 The present technology allows measurement of the extrapolation contact resistance at a high temperature. → The contact resistance at the operating temperature of a thermoelectric material may be accurately measured.
	 The present technology allows measurement of the resistance in the probing & scanning modes. → Rapid measurement; applicable to various samples; small errors
	 Noise minimized at a high temperature → Radiation shield structure minimizes the noise by providing temperature equilibrium.

>>> As the high-temperature contact resistance measurement data are secured, the contact resistance at the actual operating temperature of a thermoelectric material may be analyzed

- R&D work to increase the efficiency of the technology is now being carried out.
- R&D work to secure the process technology for manufacturing simulation is now being carried out.

80

81