연구책임자

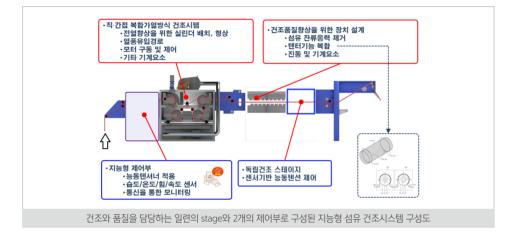
○ 문의

▼ TEL

한국에너지기술연구원

기술사업화실

042-860-3384


kier-tlo@kier.re.kr

에너지효율·소재연구본부 에너지절약연구실 김성일

에너지 고효율 지능형 섬유 건조시스템

직간접 복합가열방식과 지능형 제어구조를 채택함으로써 에너지 고율화와 생산성/ 품질이 동시에 향상된 국내 기술원천의 지능형 복합 건조시스템.

○ 기술의 구성도/개념도

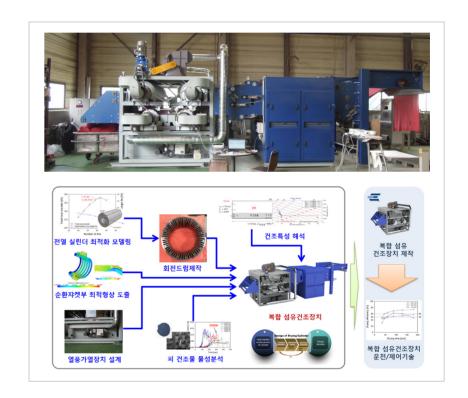
○ 기술의 주요 내용 및 특징

- ∘ 에너지효율과 건조 품질을 동시에 만족시킬 수 있는 시스템
- 간접가열과 직접가열이 일련의 흐름 상에 복합적으로 이루어지는 전열방식
- 섬유 내 잔류응력을 효과적으로 제거하는 장치 구조
- 4단의 전열실린더가 3차원 구조로 이루어진 컴팩트한 장치 구조
- 통기 건조방식 건조장치 크기의 1/3 수준
- 다양한 sheet type 피 건조물에 적용가능한 범용성 구조
- 섬유류를 포함하여 제지, 한지, 특수지 등

이 기술의 적용처

응용분야	적용제품	
제지산업, 섬유산업, 단열소재 등 기능성 시트제품 관련 산업	섬유, 제지, 한지, 특수지, 기능성 제품	-

○ 기술의 비교우위성/ 기존 기술 대비 차별성


기존 기술

- 에너지효율과 건조 품질 모두를 만족시킬 수 있는 건조기술 부재
- 기존 열풍방식: 품질은 좋으나. 에너지효율이 낮음
- 기존 스팀방식: 에너지효율은 높으나, 품질이 낮음
- 건조장치의 규모가 크고 고가임.

본기술

- 에너지효율과 건조품질을 동시에 만족시킬 수 있는 건조기술
- 기존 건조장치 대비 약 15% 에너지효율 향상
- 실시간 계측을 통한 가변적 제어
- 운전 안정성이 향상된 PnP 시스템
- 컴팩트한 건조시스템 구조
- 통기식 건조장치의 1/3 크기

○ 실험 및 실증 데이터

○ 기술의 성숙도

지식재산권 현황

[TRL 6: 파일롯 규모 시작품 제작 및 성능 평가]

순번	발명의 명칭	출원번호	출원일자	등록번호	등록일자
1	섬유/제지용 복합 건조 시스템	_	-	10-1745334	2017.06.02
2	섬유 건조장치 및 이의 제어방법	10-2016- 0181832	2016.12.29	-	-
3	Sheet type materials drying apparatus and a method for controlling the same	PCT/KR2017/ 008581	2017.08.09	-	-

44

Principal researcher

Energy Saving Laboratory of the Energy Efficiency Technologies and Materials Science Division

Business Development

Team of the Korea

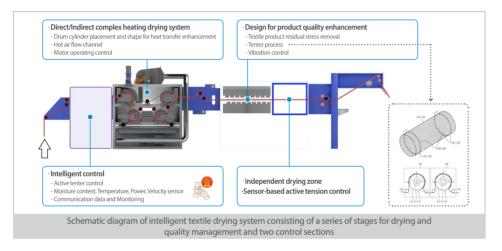
Institute of Energy

042-860-3384

kier-tlo@kier.re.kr

Research

L Tel


E-mail

Kim Seong-II

High-energy efficiency intelligent textile drying system

The present technology relates to an intelligent complex drying system developed by Korea's own source technology. The technology employs a both a direct and indirect complex complex heating method and an intelligent control structure to increase the energy efficiency and improve the productivity and quality.

Structural Diagram/Conceptual Diagram

Description and Characteristics of Technology

- System meeting the needs for both high energy efficiency and high drying quality
- Complex electric heating method by which indirect heating and direct heating are performed successively
- Apparatus structure effectively removes residual stress in textile
- Compact apparatus structure consisting of four stages of electric heating cylinders in a 3D structure
- 1/3 of the size of air ventilation-based drying apparatus
- General purpose structure applicable various sheet types of materials to be dried
- $\hbox{-} Textile as well as paper-making industry, Korean traditional paper, special paper, etc.\\$

Scope of Application

Application Fields	Products
Paper-making industry, textile industry,	Textile, paper-making industry,
functional sheet products such as	Korean traditional paper, special paper,
insulation materials	functional products

 Comparative advantages of technology / Differentiation from existing technologies

Experimental

data

and empirical

Conventional Technology

- The conventional technologies fail to satisfy the needs for both high energy efficiency and high drying quality.
- -The conventional hot air drying provides high drying quality but low energy efficiency.
- -The conventional steam drying provides high energy efficiency but low drying quality.
- The drying apparatus is large and expensive.

Present Technology

- The present drying technology satisfies the needs for both high energy efficiency and high drying quality
- -The energy efficiency is about 15% higher than that of the conventional drying apparatus.
- -The operation is variably controlled through real-time measurement.
- The PnP system has improved the operation stability.
- The present technology includes a compact drying system.
- The size is 1/3 of the air ventilation-based drying apparatus.

Maturity level of technology

Current status of intellectual property rights

[TRL 6: pilot-scale prototype preparation and performance evaluation]

No.	Title of Invention	Application Number	Application Date	Registration Number	Registration Date
1	Complex drying system for textile and paper	-	-	10-1745334	2017.06.02
2	Textile drying apparatus and a method for controlling the same	10-2016- 0181832	2016.12.29	-	-
3	Sheet type materials drying apparatus and a method for controlling the same	PCT/KR2017/ 008581	2017.08.09	-	-