요약 19

기술명 : 부식・박리 방지용 세라믹층이 코팅된 방사성 동위원소 생산용기 제조 기술

	기술분이	: (6T) 산업기술 분류코드							
√ E fr - L (O1)			대분류 중분류			소분류 코드번호		-번호	
П			기계・소재	지타 표면처리 표면처리기술			101310		
	기술 요약	내부 금속재가 방사성 동위원소와 반응하지 않도록 금속재 표면을 세라믹재로 코팅하는 세라믹 코팅에 대한 기술임							
기 술 개 요	기술의 효과	• 강산-강염기 환경에서 방사성동위원소와 내부 금속재의 반응을 방지함 • 고열발생 환경에서도 금속재와 코팅재의 박리가 일어나지 않음							
	기술의 응용분야	구조 세라믹스			항공기 부품 산업				
		경·중수로, 액체금속로, 고온가스 냉각로, 핵융합로, SiC 열교환기, 세라믹재 가스터빈, 세라믹 베어링, 항공기 shaft, 핵잠수함용 seal 항공기 부품							
	기술 키워드	경사기능 코팅, 방사성동위원소 제조용기, 도금, 레이저 코팅 functional gradient coating, vessel for radioisotope production, electroplating, laser coating							
	기술 완성도 (TRL)	기초 연구 단계	실험 단계	시작품		제품화 및		사업화	
		기본원리 기본개년 파악 정립	경 기능 및 연구실 개념 검증 테스		파일럿현상 테스트		!제 완경 종테스트	상용운영	
			•						
	시장 동향		국내 구조 세라						
환 경 분 석		시장규모	1,789억원으로, 세계 구조 세라믹스 시장은 2013년 10,084백만 달러에서 2020년에는 17,817백만 달러로 성장할 것으로 전망됨						
			국내 구조 세라믹스 시장은 연평균 11%씩 성장하고 있는 것으로						
		성장률(CAGR)	추정되며, 세계 구조 세라믹스 시장은 연평균 8.5%의 성장률을 갖는 것으로 추정됨						
		가격민감도	낮음						
		제품수명주기	구조 세라믹스 제품의 경우 시장의 특성상 제품 수명이 김						
			세라믹 소재업체는 완제품 수요업체에서 부품 및 소자 공급업체						
		유통구조	까지 계열화된 가치사슬 구조를 통해서 비즈니스를 전개하고 있으며, 국내업체의 경우에는 이러한 구조에 더해서 가치사슬의 전						
		11 0 1 —	방산업에 특화되어 있는 중견업체를 중심으로 협력 중소업체가						
		세라믹 소재산업의 핵심 역할을 하고 있음 구조세라믹 소재·부품은 반도체/디스플레이 제조설비의 핵심부품으로 제품의 신뢰							
	업체 동향	성 확보와 제조공정의 안정화를 통한 양산으로 품질을 확보하면 세계 최고 수준에							
		도달하여 있는 국내 반도체/디스플레이 산업으로 인하여 지속적인 수요증가를 확실							
	기술사업화 방안	히 보장받을 수 <u>*</u>	있음	 형 태			7] 장	
사 업 화		·	기비기스 트레크		al cal all all A	Alalal Hal			
		기술거래			가능기업에 기술실시권 부여				
		Joint Venture	연구원과 기업의 공동투자를 통한						
전과		Venture	연구원 주도의	창업보육 및 기	및 기업성장 후 기술이전			**	
략		R&BD	기술이전을 전제로 한 공동 연구개발		발	***			