33

요 연구책임자

에너지효율·소재연구본부 분리변환소재연구실 김동국

축전식 흐름전극 기반의 전기화학적 수처리 기술(FCDI)

3차원 격자구조 형태의 미세유로 집전체를 통한 축전식 흐름전극 기반의 저비용 수처리 탈염 기술.

○ 기술의 구성도/개념도

○ 기술의 주요 내용 및 특징

- 기존 CDI용 고정전극 대신 슬러리형태의 축전식 흐름전극을 통한 단위셀당 무한 이온흡착 용량을 구현함으로써 저비용의 스케일업이 용이한 새로운 전기화학적 탈염 수처리 기술
- 이온교환 및 집전기술을 통합한 3D 전극구조체 기술
- 전통적인 2차원 적층구조를 탈피한 저비용의 컴팩트한 새로운 전극회학 셀구조
- · 적층구조 대비 100배 이상의 체적당 접촉면적 구현
- · 적층구조 전기화학셀 가격대비 1/10 예상

○ 기술의 적용처

응용분야	적용제품	Salinity Power Generation	Salt Enrichment
수처리, 에너지변환, 에너지저장, 자원회수 등	축전식 탈이온, 염수발전, 해수담수화, 정수, 초순수, 산업폐수 처리, ESS, 결정화 농축 등	Energy Storage	Desalination

● 기술의		기존 기술			본기술	
비교우위성/ 기존 기술 대비 차별성	현 기 Cl 。 。	존 증발 및 RO기술을 대체할 술로서 전기화학 막분리 기반 DI기술의 현안 문제점 제한된 이온흡착용량 반복적인 이온흡·탈착의 불연 2차원적 적층의 고비용 스케일	차세대 수처리 의 기존 속성 ¹ 업	고정상 전극과 불필요. 유동상 탈염과 에너지 • 단위셀에서 ¹ • 대용량 흐름 • 3D 구조체 7	달리 전극 활물질 흐름전극을 이용 저장, 생산기술로 무한 흡착용량 구현 전극기반의 연속공 기반의 저비용 스케	의 박막코팅 하여 대용량 활용 가능. 연 정 일업 기술
● 실험 및 실증 데이터				Conductively (ling and)	49.2 to 2.84 mS	cm ⁻¹
		세계최초 명함크기 FCDI 단	위셀 (N1)	해수영	영역 95% 탈염성능	(N1셀)
		2D Stacking Scale-	up	서	계최초 3D Scale-	qu
• 기숙의		1 2 3	4 5	5 6	7 8	3 9
성순도	I	기초연구 I	실험	시작품	I 실용화	I 사업화
0-1	[TF 고상 Lab - C - 3	RL 4: 실험실 규모의 소재/ 명능 3D 구조체 기반의 축전적 a scale 시작품 개발 단계 바이크로채널 구조의 축전식 흐 D 전극구조체 기반의 탈염장차	부품/시스템 핵(식 흐름전극을 이 름전극 기술 확보 니시작품 개발	심성능 평가] 용한 탈염 공정기	기술	
● 지식재산권	순번	법 발명의 명칭	출원번호	출원일자	등록번호	등록일자
현황	1	유동상 전극시스템	KR2011-006010	2011.08.16	US9,963,363 B2	2018.05.08
	2	격자형 흐름전극 구조체	KR2015-0030566	2015.03.04	KR10-1750417	2017.06.19

문의 한국에너지기술연구원 기술사업화실

📞 TEL 042-860-3384

🔀 E-mail kier-tlo@kier.re.kr

에너지소재공정기술

78 / 79

33

Principal researcher

Separation and **Conversion Materials** Laboratory of the Energy Efficiency Technologies and Materials Science Division

Kim Dong-Kook

Electrochemical water treatment technology via capacitive flow electrodes (Flow-electrode Capacitive Deionization, FCDI)

The present technology is a low-cost water treatment desalination technology based on capacitive flow electrode through a microchannel current collector in a 3D lattice structure.

Structural Diagram/Conceptual Diagram

O Description and Characteristics of Technology

• The present technology is a novel electrochemical desalination water treatment technology that may be easily scaled up at a low cost, because an unlimited ion adsorption capacity per unit cell has been realized by employing a slurry type capacitive flow electrode instead of the conventional fixed electrode for CDI.

- 3D electrode structure technology integrating ion exchange and current collector technologies - Novel low-cost and compact electrochemical cell structure replacing conventional 2D layered structure
- The contact area per unit volume is 100 times larger than that of the layered structure. • The price is about 1/10 of that of the electrochemical cells having a layered structure.

Scope of Application

Application Fields	Products
Water treatment, energy conversion, energy storage, resources recycling, etc.	Capacitive deionization, seawater power generation, sweater desalinati water filtration, deionized water, industrial wastewater treatment, ES crystallization concentration, etc.

tion, sweater desalinatior stewater treatment, ESS,

O Comparative advantages over existing technologies

Conventional Technolo

The conventional CDI technology base electrochemical membrane separation that may prevent it becoming a next-g water treatment technology that will re current evaporation and RO technolog

- Limited ion adsorption capacity
- Discontinuity of repeated ion adsorption desorption
- High-cost scale-up by 2D lamination

• Experimental data

Maturity level of technology

• Current status

of intellectual

property rights

[TRL 4: Lab-scale core performance evaluation of materials, parts, and system] High-performance 3D structure-based desalination process technology using capacitive

flow electrode

Lab scale prototype development level

• The capacitive flow electrode technology based on a microchannel structure has been secured. • A 3D electrode structure-based desalination apparatus prototype has been developed.

	No.	Title of Invention	Application Number	Application Date	Registration Number	Registration Date
	1	Flow electrode system	KR2011-006010	2011.08.16	US9,963,363 B2	2018.05.08
_	2	Lattice type flow cell structure	US15/694,159	2017.09.01	KR10-1750417	2017.06.19

0 Inquiries

Business Development Team of the Korea Institute of Energy Research

📞 Tel 042-860-3384

E-mail kier-tlo@kier.re.kr

ду	Present Technology
ed on n has issues generation replace the gies.	The present technology does not require film coating of an electrode active material in contrast to a fixed electrode. The flow electrode may be applied to large-capacity desalination and energy storage and as a production technology.
	• Unlimited adsorption capacity realized in a unit cell
ption and	 Continuous process based on large-capacity flow electrode
1	 Low-cost scale-up technology based on 3D structure

and

Energy

Mater

78

79